Projects per year
Abstract / Description of output
Cellular senescence is a stress response involved in ageing and diverse disease processes including cancer, type-2 diabetes, osteoarthritis and viral infection. Despite growing interest in targeted elimination of senescent cells, only few senolytics are known due to the lack of well-characterized molecular targets. Here, we report the discovery of three senolytics using cost-effective machine learning algorithms trained solely on published data. We computationally screened various chemical libraries and validated the senolytic action of ginkgetin, periplocin and oleandrin in human cell lines under various modalities of senescence. The compounds have potency comparable to known senolytics, and we show that oleandrin has improved potency over its target as compared to best-in-class alternatives. Our approach led to several hundred-fold reduction in drug screening costs and demonstrates that artificial intelligence can take maximum advantage of small and heterogeneous drug screening data, paving the way for new open science approaches to early-stage drug discovery.
Original language | English |
---|---|
Journal | Nature Communications |
Early online date | 10 Jun 2023 |
DOIs | |
Publication status | E-pub ahead of print - 10 Jun 2023 |
Keywords / Materials (for Non-textual outputs)
- cellular senescence
- machine learning
- artificial intelligence
- drug discovery
- senolytics
Fingerprint
Dive into the research topics of 'Discovery of senolytics using machine learning'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Characterization of the Senescence Associated Extracellular Matrix (SA-ECM) and its role in cancer progression
1/12/13 → 30/09/21
Project: Research
-
Equipment
-
Edinburgh Drug Discovery
Asier Unciti-Broceta (Manager), Scott Webster (Manager) & Neil Carragher (Manager)
Deanery of Molecular, Genetic and Population Health SciencesFacility/equipment: Facility