Abstract
We assessed the distribution in brain pH after neonatal hypoxic-ischaemic insult and its correlation with local injury. Postnatal day 7 mice were injected with neutral red and underwent left carotid occlusion and exposure to 8% oxygen. Images captured from the cut surface of snap-frozen brain were used to calculate the pH from the blue-green absorbance ratios. Carotid occlusion alone had no effect, but combined with hypoxia caused rapid, biphasic pH decline, with the first plateau at 15-30 min, and the second at 60-90 min. The ipsilateral dorsal cortex, hippocampus, striatum and thalamus were most affected. Contralateral pH initially showed only 30% of the ipsilateral decline, becoming more acidotic with increasing duration. Systemic blood analysis revealed, compared with hypoxia alone, that combined insult caused a 63% decrease in blood glucose (1.3 ± 0.2 mM), a 2-fold increase in circulating lactate (17.7 ± 2.9 mM), a reduction in CO(2) to 1.9 ± 0.1 kPa and a drop in pH (7.26 ± 0.06). Re-oxygenation resulted in the normalisation of systemic changes, as well as a global alkaline rebound in brain pH at 4-6 h. A topographic comparison of brain injury showed only a partial correlation with pH changes, with the severest injury occurring in the ipsilateral hippocampus and sparing acidic parts of the contralateral cortex.
Original language | English |
---|---|
Pages (from-to) | 505-18 |
Number of pages | 14 |
Journal | Developmental neuroscience |
Volume | 33 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2011 |
Keywords
- Animals
- Animals, Newborn
- Brain/physiopathology
- Female
- Functional Laterality
- Hydrogen-Ion Concentration
- Hypoxia-Ischemia, Brain/blood
- Immunohistochemistry
- Mice
- Mice, Inbred C57BL