Projects per year
Abstract / Description of output
Liquid droplets move readily under the influence of surface tension gradients on their substrates. Substrates decorated with parallel microgrooves, or striations, presenting the advantage of homogeneous chemical properties yet varying the topological characteristics on either side of a straight-line boundary, are considered in this study. The basic type of geometry consists of hydrophobic micro-striations/rails perpendicular to the boundary, with the systematic variation of the width to spacing ratio, thus changing the solid–liquid contact fraction and inducing a well-defined wettability contrast across the boundary. Droplets in the Cassie–Baxter state, straddling the boundary, move along the wettability contrast in order to reduce the overall surface free energy. The results show the importance of the average solid fraction and contrasting fraction in a wide range of given geometries across the boundary on droplet motion. A unified criterion for contrasting striated surfaces, which describes the displacement and the velocity of the droplets, is suggested, providing guidelines for droplet manipulation on micro-striated/railed surfaces.
Original language | English |
---|---|
Article number | 251604 |
Number of pages | 5 |
Journal | Applied Physics Letters |
Volume | 116 |
Early online date | 23 Jun 2020 |
DOIs | |
Publication status | E-pub ahead of print - 23 Jun 2020 |
Fingerprint
Dive into the research topics of 'Droplet Motion on Contrasting Striated Surfaces'. Together they form a unique fingerprint.Projects
- 2 Finished
-
ThermaSMART: Smart Thermal Management Of High-power Microprocessors Using Phase-change
Valluri, P., Christy, J. & Sefiane, K.
1/12/17 → 31/05/23
Project: Research
-
New Engineering Concepts from Phase Transitions: A Leidenfrost Engine
Sefiane, K., Stokes, A. & Walton, A.
1/09/17 → 30/11/20
Project: Research