Abstract / Description of output
Expanded perlite has outstanding thermal and acoustic insulating properties and is widely used in the manufacturing and construction industries. The conventional perlite expansion method suffers disadvantages which affect the quality of expanded perlite products, thus limiting their performance and range of applications. A new perlite expansion process has been designed and a vertical electrical furnace for perlite expansion has been constructed in our laboratory in order to overcome these drawbacks, enabling precise control of experimental conditions, so as to prescribe the temperature profile and residence time in the heating chamber. Perlite ore origin, size distribution and water content are critical parameters affecting expanded perlite quality; air feed flow rate and temperature, as well as the imposed wall temperature distribution along the chamber are also experimentally known to have a profound, measurable effect on perlite grain residence time and expansion. A detailed sensitivity analysis has been performed in order to quantitatively understand the effect and relative importance of all these operational parameters on macroscopic furnace operation (perlite particle velocity and temperature evolution) and inaccessible microscopic characteristics (internal steam bubble pressure and size), based on a new dynamic model for perlite grain expansion we have developed towards furnace optimization [1].
Original language | English |
---|---|
Title of host publication | Proceedings of the International Conference on Differential Equations, Difference Equations and Special Functions (ICDDESF) |
Publisher | University of Patras |
Number of pages | 13 |
Publication status | Published - 3 Sept 2012 |