Early dynamical evolution of rotating star clusters in a tidal field

Maria Tiongco*, Enrico Vesperini, Anna Lisa Varri

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

In order to explore how the early internal rotational properties of star clusters are affected by the external potential of their host galaxies, we have run a suite of N-body simulations following the early dynamical evolution and violent relaxation of rotating star clusters embedded in a tidal field. Our study focuses on models for which the cluster’s rotation axis has a generic orientation relative to the torque of the tidal field. The interaction between the violent relaxation process, angular momentum of the cluster, and the external torque creates a complex kinematic structure within the cluster, most prominently a radial variation in the position of the rotation axis, along both the polar and azimuthal directions. We also examine the cluster’s velocity dispersion anisotropy and show that the projected anisotropy may be affected by the variation of the rotation axis directions within the cluster; the combination of projection effects and the complex kinematical features may result in the measurement of tangential anisotropy in the cluster’s inner regions. We also characterize the structural properties of our clusters as a function of their initial rotation and virial ratio and find that clusters may develop a triaxial morphology and a radial variation of the minor axis not necessarily aligned with the rotation axis. Finally, we examine the long-term evolution of these complex kinematic features.
Original languageEnglish
Pages (from-to)1584-1597
Number of pages14
JournalMonthly Notices of the Royal Astronomical Society
Issue number2
Early online date11 Mar 2022
Publication statusPublished - 1 May 2022

Keywords / Materials (for Non-textual outputs)

  • galaxies: star clusters: general
  • methods: numerical


Dive into the research topics of 'Early dynamical evolution of rotating star clusters in a tidal field'. Together they form a unique fingerprint.

Cite this