Ecomorphodynamics of rivers with converging boundaries

Paolo Perona*, Benoît Crouzy, Stuart McLelland, Peter Molnar, Carlo Camporeale

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Many rivers worldwide show converging sections where a characteristic limiting front for vegetation establishment on gravel bars is observed. An important conceptual model was advanced in 2006 by Gurnell and Petts, who demonstrated that for the convergent section of the Tagliamento River the downstream front of vegetation establishment can be explained by unit stream power. We introduce a theoretical framework based on 1D ecomorphodynamic equations modified to account for the biological dynamics of vegetation. We obtain the first analytical result explaining the position and river width where vegetation density is expected to vanish in relation to a characteristic streamflow magnitude and both hydraulic and biological parameters. We apply our model to a controlled experiment within a convergent flume channel with growing seedlings perturbed by periodic floods. For a range of timescales where hydrological and biological processes interact, we observe the formation of a front in the convergent section beyond which vegetation cannot survive, the location of which is explained by flow magnitude. This experiment confirms that the timescales of the involved processes and the unit stream power determine the existence and the position of the front within convergent river reaches, respectively.

Original languageEnglish
Pages (from-to)1651-1662
Number of pages12
JournalEarth Surface Processes and Landforms
Volume39
Issue number12
DOIs
Publication statusPublished - 2014

Keywords

  • Biomass selection
  • Converging channels
  • Flume experiment
  • Fluvial processes
  • Riverbed vegetation

Fingerprint

Dive into the research topics of 'Ecomorphodynamics of rivers with converging boundaries'. Together they form a unique fingerprint.

Cite this