TY - JOUR
T1 - Effect of aspect ratio and eccentricity on heat transfer from a cylinder in a cavity
T2 - International Journal of Numerical Methods for Heat & Fluid Flow
AU - Tasnim, Syeda Humaira
AU - Mahmud, Sohel
AU - Das, Prodip Kumar
PY - 2002
Y1 - 2002
N2 - This paper presents the hydrodynamic and thermal behavior of fluid that surrounds an isothermal circular cylinder in a square cavity. Simulations were carried out for four aspect ratios (defined by L/D), i.e. 2.0, 3.0, 4.0, 5.0. An incompressible flow of Newtonian fluid is considered. Prandtl number is assumed constant and equal to 1. Effect of eccentric positions (ε=−0.5 and 0.5) of the cylinder with respect to the cavity was carried out at L/D=2.0. Predicted results for eccentric cases are compared with concentric (ε=0.0) case. Grashof number is based on the diameter of the cylinder and ranges from 10 to 106. The control volume based finite volume method is used to discretize the governing equations in cylindrical coordinate. SIMPLE algorithm is used. A collocated variable arrangement is considered and SIP solver is employed to solve the system of equations. Parametric results are presented in the form of streamlines and isothermal lines for both eccentric and concentric positions. Heat transfer distribution along the perimeter of the cylinder is presented in the form of local Nusselt number. Predicted results show good agreement with the results described by Cesini et al. (1999).
AB - This paper presents the hydrodynamic and thermal behavior of fluid that surrounds an isothermal circular cylinder in a square cavity. Simulations were carried out for four aspect ratios (defined by L/D), i.e. 2.0, 3.0, 4.0, 5.0. An incompressible flow of Newtonian fluid is considered. Prandtl number is assumed constant and equal to 1. Effect of eccentric positions (ε=−0.5 and 0.5) of the cylinder with respect to the cavity was carried out at L/D=2.0. Predicted results for eccentric cases are compared with concentric (ε=0.0) case. Grashof number is based on the diameter of the cylinder and ranges from 10 to 106. The control volume based finite volume method is used to discretize the governing equations in cylindrical coordinate. SIMPLE algorithm is used. A collocated variable arrangement is considered and SIP solver is employed to solve the system of equations. Parametric results are presented in the form of streamlines and isothermal lines for both eccentric and concentric positions. Heat transfer distribution along the perimeter of the cylinder is presented in the form of local Nusselt number. Predicted results show good agreement with the results described by Cesini et al. (1999).
U2 - 10.1108/09615530210443061
DO - 10.1108/09615530210443061
M3 - Article
SN - 0961-5539
VL - 12
SP - 855
EP - 869
JO - International Journal of Numerical Methods for Heat and Fluid Flow
JF - International Journal of Numerical Methods for Heat and Fluid Flow
IS - 7
ER -