Effects of refractory period on stochastic resetting

Martin R. Evans, Satya N. Majumdar

Research output: Contribution to journalArticlepeer-review


We consider a stochastic process undergoing resetting after which a random refractory period is imposed. In this period the process is quiescent and remains at the resetting position. Using a first-renewal approach, we compute exactly the stationary position distribution and analyse the emergence of a delta peak at the resetting position. In the case of a power-law distribution for the refractory period we find slow relaxation. We generalise our results to the case when the resetting period and the refractory period are correlated, by computing the Laplace transform of the survival probability of the process and the mean first passage time, i.e., the mean time to completion of a task. We also compute exactly the joint distribution of the active and absorption time to a fixed target.
Original languageEnglish
Number of pages15
JournalJournal of Physics A: Mathematical and Theoretical
Publication statusPublished - 30 Nov 2018


  • cond-mat.stat-mech


Dive into the research topics of 'Effects of refractory period on stochastic resetting'. Together they form a unique fingerprint.

Cite this