Electrochemical treatment of textile dyes and dyehouse effluents

E. Chatzisymeon, N.P. Xekoukoulotakis, A. Coz, N. Kalogerakis, D. Mantzavinos

Research output: Contribution to journalArticlepeer-review


The electrochemical oxidation of textile effluents over a titanium-tantalum-platinum-iridium anode was investigated. Batch experiments were conducted in a flow-through electrolytic cell with internal recirculation at current intensities of 5, 10, 14 and 20 A, NaCl concentrations of 0.5, 1, 2 and 4% and recirculation rates of 0.81 and 0.65 L/s using a highly colored, synthetic effluent containing 16 textile dyes at a total concentration of 361 mg/L and chemical oxygen demand (COD) of 281 mg/L. Moreover, an actual dyehouse effluent containing residual dyes as well as various inorganic and organic compounds with a COD of 404 mg/L was tested. In most cases, quantitative effluent decolorization was achieved after 10-15 min of treatment and this required low energy consumption; conversely, the extent of mineralization varied between 30 and 90% after 180 min depending on the operating conditions and the type of effluent. In general, treatment performance improved with increasing current intensity and salinity and decreasing solution pH. However, the use of electrolytes not containing chloride (e.g. FeSO or Na SO ) suppressed degradation. Although the acute toxicity of the actual effluent to marine bacteria Vibrio fischeri was weak, it increased sharply following treatment, thus suggesting the formation of persistent toxic by-products.
Original languageEnglish
Pages (from-to)998-1007
Number of pages10
JournalJournal of Hazardous Materials
Issue number2
Publication statusPublished - 21 Sep 2006


Dive into the research topics of 'Electrochemical treatment of textile dyes and dyehouse effluents'. Together they form a unique fingerprint.

Cite this