Electronic Tuning of Two Metals and Colossal Magnetoresistances in EuWO1+xN2-x Perovskites

Minghui Yang, Judith Oro-Sole, Anna Kusmartseva, Amparo Fuertes, J. Paul Attfield

Research output: Contribution to journalArticlepeer-review

Abstract

A remarkable electronic flexibility and colossal magnetoresistance effects have been discovered in the perovskite oxynitrides Ammonolysis of Eu2W2O9 yields scheelite-type intermediates EuWO4-yNy with a very small degree of nitride substitution (y = 0.04) and then EuWO1+xN2-x perovskites that show a wide range of compositions -0.16 <= x <= 0.46. The cubic lattice parameter varies linearly with x, but electron microscopy reveals a tetragonal superstructure. The previously unobserved x < 0 regime corresponds to oxidation of Eu (hole doping of the Eu:4f band), whereas x > 0 materials have chemical reduction of W (electron doping of the W:5d band). Hence, both the Eu and W oxidation states and the hole/electron doping are tuned by varying the O/N ratio. EuWO1+xN2-x phases order ferromagnetically at 12 K, and colossal magnetoresistances (CMR) are observed in the least doped (x = -0.04) sample. Distinct mechanisms for the hole and electron magnetotransport regimes are identified.

Original languageEnglish
Pages (from-to)4822-4829
Number of pages8
JournalJournal of the American Chemical Society
Volume132
Issue number13
DOIs
Publication statusPublished - 7 Apr 2010

Keywords / Materials (for Non-textual outputs)

  • OXYNITRIDES
  • NITROGEN
  • OXIDES

Fingerprint

Dive into the research topics of 'Electronic Tuning of Two Metals and Colossal Magnetoresistances in EuWO1+xN2-x Perovskites'. Together they form a unique fingerprint.

Cite this