Abstract / Description of output
This paper describes a CNN-based multi-frame post-processing approach based on a perceptually-inspired Generative Adversarial Network architecture, CVEGAN. This method has been integrated with the Versatile Video Coding Test Model (VTM) 15.2 to enhance the visual quality of the final reconstructed content. The evaluation results on the CLIC 2022 validation sequences show consistent coding gains over the original VVC VTM at the same bitrates when assessed by PSNR. The integrated codec has been submitted to the Challenge on Learned Image Compression (CLIC) 2022 (video track), and the team name associated with this submission is BVI_VC.
Original language | English |
---|---|
Pages | 1-4 |
Number of pages | 4 |
DOIs | |
Publication status | Published - 19 Jun 2022 |
Event | 5th Workshop and Challenge on Learned Image Compression - Online Duration: 19 Jun 2022 → 19 Jun 2022 |
Workshop
Workshop | 5th Workshop and Challenge on Learned Image Compression |
---|---|
Period | 19/06/22 → 19/06/22 |