Error exponents for Nakagami-m fading channels

J. Xue, M. Z I Sarkar, T. Ratnarajah

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Along with the channel capacity, the error exponent is one of the most important information-theoretic measures of reliability, as it sets ultimate bounds on the performance of communication systems employing codes of finite complexity. In this paper, we derive an exact analytical expression for the random coding error exponent, which provides significant insight regarding the ultimate limits to communications through Nakagami-m fading channels. An important fact about this error exponent is that it determines the behavior of error probability in terms of the transmission rate and the code length that reflects the coding complexity required to achieve a certain level of reliability. Moreover, from the derived analytical expression, we can easily compute the necessary codeword length without extensive Monte-Carlo simulation to achieve a predefined upper bound for error probability at a rate below the channel capacity. We also improve the random coding bound by expurgating bad codewords from the code ensemble, since random coding error exponent is determined by selecting codewords independently according to the input distribution where good and bad codewords contribute equally to the overall average error probability. Finally, we derive exact analytical expressions for the cutoff rate, critical rate, and expurgation rate and verify the analytical expressions via Monte-Carlo simulation.

Original languageEnglish
Pages (from-to)144-170
Number of pages27
JournalProblems of Information Transmission
Issue number2
Publication statusPublished - 1 Jan 2014


Dive into the research topics of 'Error exponents for Nakagami-m fading channels'. Together they form a unique fingerprint.

Cite this