Projects per year
Abstract
Extragalactic globular clusters (EGCs) are an abundant and powerful tracer of galaxy dynamics and formation, and their own formation and evolution is also a matter of extensive debate. The compact nature of globular clusters means that they are hard to spatially resolve and thus study outside the Local Group. In this work we have examined how well EGCs will be detectable in images from the Euclid telescope, using both simulated pre-launch images and the first early-release observations of the Fornax galaxy cluster. The Euclid Wide Survey will provide high-spatial resolution VIS imaging in the broad I E band as well as near-infrared photometry (Y E, J E, and H E). We estimate that the 24 719 known galaxies within 100 Mpc in the footprint of the Euclid survey host around 830 000 EGCs of which about 350 000 are within the survey's detection limits. For about half of these EGCs, three infrared colours will be available as well. For any galaxy within 50 Mpc the brighter half of its GC luminosity function will be detectable by the Euclid Wide Survey. The detectability of EGCs is mainly driven by the residual surface brightness of their host galaxy. We find that an automated machine-learning EGC-classification method based on real Euclid data of the Fornax galaxy cluster provides an efficient method to generate high purity and high completeness GC candidate catalogues. We confirm that EGCs are spatially resolved compared to pure point sources in VIS images of Fornax. Our analysis of both simulated and first on-sky data show that Euclid will increase the number of GCs accessible with high-resolution imaging substantially compared to previous surveys, and will permit the study of GCs in the outskirts of their hosts. Euclid is unique in enabling systematic studies of EGCs in a spatially unbiased and homogeneous manner and is primed to improve our understanding of many understudied aspects of GC astrophysics.
Original language | English |
---|---|
Article number | A251 |
Pages (from-to) | 1-18 |
Number of pages | 18 |
Journal | Astronomy and Astrophysics |
Volume | 693 |
DOIs | |
Publication status | Published - 22 Jan 2025 |
Keywords / Materials (for Non-textual outputs)
- Galaxies: nuclei
- Galaxies: star clusters: general
- Space vehicles: instruments
Fingerprint
Dive into the research topics of 'Euclid preparation. LVIII. Detecting globular clusters in the Euclid survey'. Together they form a unique fingerprint.Projects
- 1 Active
-
The Archaeological Record in Local Galaxy Stellar Halos
Science and Technology Facilities Council
1/04/24 → 31/03/27
Project: Research