TY - JOUR
T1 - Evaluating potential policies for the UK perennial energy crop market to achieve carbon abatement and deliver a source of low carbon electricity
AU - Alexander, Peter
AU - Moran, Dominic
AU - Rounsevell, Mark D A
PY - 2015/5/9
Y1 - 2015/5/9
N2 - The electricity infrastructure in many developed countries requires significant investment to meet ambitious carbon emissions reduction targets, and to bridge the gap between future supply and demand. Perennial energy crops have the potential to deliver electricity generation capacity while reducing carbon emissions, leading to polices supporting the adoption of these crops. In the UK, for example, support has been in place over the past decade, although uptake and the market development have so far been relatively modest. This paper combines biophysical and socio-economic process representations within an agent-based model (ABM), to offer insights into the dynamics of the development of the perennial energy crop market. Against a changing policy landscape, several potential policy scenarios are developed to evaluate the cost-effectiveness of the market in providing a source of low carbon renewable electricity, and to achieve carbon emissions abatement. The results demonstrate the key role of both energy and agricultural policies in stimulating the rate and level of uptake; consequently influencing the cost-effectiveness of these measures. The UK example shows that energy crops have the potential to deliver significant emissions abatement (up to 24Mt carbon dioxide equivalent year-1, 4% of 2013 UK total emissions), and renewable electricity (up to 29TWhyear-1, 8% of UK electricity or 3% of primary energy demand), but a holistic assessment of related policies is needed to ensure that support is cost-effective. However, recent policy developments suggest that domestically grown perennial energy crops will only play a niche role (<0.2%) of the UK energy balance.
AB - The electricity infrastructure in many developed countries requires significant investment to meet ambitious carbon emissions reduction targets, and to bridge the gap between future supply and demand. Perennial energy crops have the potential to deliver electricity generation capacity while reducing carbon emissions, leading to polices supporting the adoption of these crops. In the UK, for example, support has been in place over the past decade, although uptake and the market development have so far been relatively modest. This paper combines biophysical and socio-economic process representations within an agent-based model (ABM), to offer insights into the dynamics of the development of the perennial energy crop market. Against a changing policy landscape, several potential policy scenarios are developed to evaluate the cost-effectiveness of the market in providing a source of low carbon renewable electricity, and to achieve carbon emissions abatement. The results demonstrate the key role of both energy and agricultural policies in stimulating the rate and level of uptake; consequently influencing the cost-effectiveness of these measures. The UK example shows that energy crops have the potential to deliver significant emissions abatement (up to 24Mt carbon dioxide equivalent year-1, 4% of 2013 UK total emissions), and renewable electricity (up to 29TWhyear-1, 8% of UK electricity or 3% of primary energy demand), but a holistic assessment of related policies is needed to ensure that support is cost-effective. However, recent policy developments suggest that domestically grown perennial energy crops will only play a niche role (<0.2%) of the UK energy balance.
KW - Agent-based model
KW - Energy crops
KW - Energy policy
KW - Land use
KW - Miscanthus
KW - Short-rotation coppice
UR - http://www.scopus.com/inward/record.url?scp=84928963120&partnerID=8YFLogxK
U2 - 10.1016/j.biombioe.2015.04.025
DO - 10.1016/j.biombioe.2015.04.025
M3 - Article
SN - 0961-9534
JO - Biomass & Bioenergy
JF - Biomass & Bioenergy
ER -