Abstract / Description of output
Seizures represent a brain activity state characterised by extended synchronised firing in multiple regions that prevent normal brain functioning. It is important to develop methods to distinguish between normal and abnormal synchronisation in epilepsy, as well as to localise the networks involved in seizures. To this end, we perform a preliminary investigation in the use of principal components analysis (PCA) to assess the change in dynamic electroencephalogram (EEG) connectivity before and after seizure onset. Source estimation was performed for an openly available EEG dataset from 14 patients with epilepsy. By applying PCA onto the EEG data processed into dynamic connectivity (dFC) matrices, we identified a set of connectivity topologies (eigenconnectivities) that explain high levels of variance in the dynamic connectivity. We compare the dimensionality reduction results obtained on source-level vs. scalp-level connectivity. We identified eigenconnectivities with differences in preictal vs. ictal activity and the brain networks associated with these activations. The work illustrates a data-driven approach for identification of topologies of brain networks that change with seizure onset.
Clinical relevance: We identified networks that are significantly varying with preictal vs. ictal brain activity, some of which verify preexistent epilepsy markers in a data-driven way
Clinical relevance: We identified networks that are significantly varying with preictal vs. ictal brain activity, some of which verify preexistent epilepsy markers in a data-driven way
Original language | English |
---|---|
Title of host publication | Proceedings of 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society |
Publisher | Institute of Electrical and Electronics Engineers |
Pages | 40-43 |
Number of pages | 4 |
Volume | 2022 |
DOIs | |
Publication status | E-pub ahead of print - 8 Sept 2022 |
Event | 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society - Glasgow, United Kingdom Duration: 11 Jul 2022 → 15 Jul 2022 https://embc.embs.org/2022/ |
Conference
Conference | 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society |
---|---|
Abbreviated title | EMBC2022 |
Country/Territory | United Kingdom |
City | Glasgow |
Period | 11/07/22 → 15/07/22 |
Internet address |