Evolutionary approaches to fuzzy modelling for classification

Michelle Galea, Qiang Shen, John Levine

Research output: Contribution to journalArticlepeer-review

Abstract

An overview of the application of evolutionary computation to fuzzy knowledge discovery is presented. This is set in one of two contexts: overcoming the knowledge acquisition bottleneck in the development of intelligent reasoning systems, and in the data mining of databases where the aim is the discovery of new knowledge. The different strategies utilizing evolutionary algorithms for knowledge acquisition are abstracted from the work reviewed. The simplest strategy runs an evolutionary algorithm once, while the iterative rule learning approach runs several evolutionary algorithms in succession, with the output from each considered a partial solution. Ensembles are formed by combining several classifiers generated by evolutionary techniques, while co-evolution is often used for evolving rule bases and associated membership functions simultaneously. The associated strengths and limitations of these induction strategies are compared and discussed. Ways in which evolutionary techniques have been adapted to satisfy the common evaluation criteria of the induced knowledge—classification accuracy, comprehensibility and novelty value—are also considered. The review concludes by highlighting common limitations of the experimental methodology used and indicating ways of resolving them.
Original languageEnglish
Pages (from-to)27-59
Number of pages33
JournalKnowledge Engineering Review
Volume19
Issue number01
DOIs
Publication statusPublished - 2004

Fingerprint

Dive into the research topics of 'Evolutionary approaches to fuzzy modelling for classification'. Together they form a unique fingerprint.

Cite this