Abstract
The asymmetric exclusion model describes a system of particles hopping in a preferred direction with hard core repulsion. These particles can be thought of as charged particles in a field, as steps of an interface, as cars in a queue. Several exact results concerning the steady state of this system have been obtained recently. The solution consists of representing the weights of the configurations in the steady state as products of non-commuting matrices.
Original language | English |
---|---|
Pages (from-to) | 25-33 |
Number of pages | 9 |
Journal | Physica a-Statistical mechanics and its applications |
Volume | 200 |
Issue number | 1-4 |
Publication status | Published - 15 Nov 1993 |
Keywords / Materials (for Non-textual outputs)
- PHASE-TRANSITIONS
- SURFACES
- GROWTH
- WAVES