TY - JOUR
T1 - Exploration of the epidemiological consequences of resistance to gastro-intestinal parasitism and grazing management of sheep through a mathematical model
AU - Laurenson, Yan Christian Stephen Mountfort
AU - Kyriazakis, Ilias
AU - Forbes, Andrew Barnet
AU - Bishop, Stephen Christopher
N1 - Copyright © 2012 Elsevier B.V. All rights reserved.
PY - 2012/10/26
Y1 - 2012/10/26
N2 - Predicting the impacts of selection for decreased faecal egg count (FEC) (i.e. host resistance) in grazing ruminants is difficult, due to complex interactions between parasite epidemiology, management and host responses. A mathematical model including heritable between lamb variation in host-parasite interactions, Teladorsagia circumcincta epidemiology and anthelmintic drenching, was developed and used to (i) address such interactions and their impact on outcomes including FEC, live weight (LW, kg) and pasture larval contamination (PC, larvae/kg DM), and (ii) investigate how grazing management strategies, aimed at reducing host exposure to infective larvae via pasture moves at 40 day intervals, affect these outcomes. A population of 10,000 lambs was simulated and resultant FEC predictions used to assign the 1,000 lambs with the highest and lowest predicted FEC to 'susceptible' (S) and 'resistant', (R) groups, respectively. The predicted average FEC of the S group was ∼8.5-fold higher than the R group across a grazing season. The R and S groups were then simulated to graze separate pastures (R(sep) and S(sep)); and repeated for 3 grazing seasons to allow predictions to diverge and stabilize. Further, different grazing strategies were superimposed on all groups. PC and average FEC were affected by whether lambs of different resistance genotype grazed together or separately, with differences increasing across grazing seasons. By the third grazing season the average PC of the R(sep) group was reduced by ∼83%, and the S(sep) group was increased by ∼240%, in comparison to the whole population average. Average FEC of the R(sep) group was reduced by ∼40%, and the S(sep) group increased by ∼46% in comparison to the R and S groups, respectively, whilst drenching had little impact on the proportional differences in FEC between groups. Predicted LW was similar for the R and R(sep) groups irrespective of anthelmintic treatment, whilst LW of the S(sep) group was reduced by ∼14% compared to the S group for un-drenched lambs, and by ∼4% for drenched lambs. The differing grazing strategies were predicted to have little impact on FEC or LW, with the exception of the S(sep) group which was predicted to have a 2kg increase in LW when drenched and moved to a clean pasture. Together, these results suggest that host genotype has a substantial impact on parasite epidemiology, however the benefits of anthelmintic treatment and grazing management should only be expected for susceptible animals. This supports the use of targeted selective treatment, focussing on susceptible animals.
AB - Predicting the impacts of selection for decreased faecal egg count (FEC) (i.e. host resistance) in grazing ruminants is difficult, due to complex interactions between parasite epidemiology, management and host responses. A mathematical model including heritable between lamb variation in host-parasite interactions, Teladorsagia circumcincta epidemiology and anthelmintic drenching, was developed and used to (i) address such interactions and their impact on outcomes including FEC, live weight (LW, kg) and pasture larval contamination (PC, larvae/kg DM), and (ii) investigate how grazing management strategies, aimed at reducing host exposure to infective larvae via pasture moves at 40 day intervals, affect these outcomes. A population of 10,000 lambs was simulated and resultant FEC predictions used to assign the 1,000 lambs with the highest and lowest predicted FEC to 'susceptible' (S) and 'resistant', (R) groups, respectively. The predicted average FEC of the S group was ∼8.5-fold higher than the R group across a grazing season. The R and S groups were then simulated to graze separate pastures (R(sep) and S(sep)); and repeated for 3 grazing seasons to allow predictions to diverge and stabilize. Further, different grazing strategies were superimposed on all groups. PC and average FEC were affected by whether lambs of different resistance genotype grazed together or separately, with differences increasing across grazing seasons. By the third grazing season the average PC of the R(sep) group was reduced by ∼83%, and the S(sep) group was increased by ∼240%, in comparison to the whole population average. Average FEC of the R(sep) group was reduced by ∼40%, and the S(sep) group increased by ∼46% in comparison to the R and S groups, respectively, whilst drenching had little impact on the proportional differences in FEC between groups. Predicted LW was similar for the R and R(sep) groups irrespective of anthelmintic treatment, whilst LW of the S(sep) group was reduced by ∼14% compared to the S group for un-drenched lambs, and by ∼4% for drenched lambs. The differing grazing strategies were predicted to have little impact on FEC or LW, with the exception of the S(sep) group which was predicted to have a 2kg increase in LW when drenched and moved to a clean pasture. Together, these results suggest that host genotype has a substantial impact on parasite epidemiology, however the benefits of anthelmintic treatment and grazing management should only be expected for susceptible animals. This supports the use of targeted selective treatment, focussing on susceptible animals.
KW - Sheep - nematodes
KW - Teladorsagia circumcincta
KW - Host resistance
KW - SMALL RUMINANTS
KW - OSTERTAGIA-CIRCUMCINCTA INFECTION
KW - TRICHOSTRONGYLUS-COLUBRIFORMIS
KW - Grazing management
KW - ANTHELMINTIC RESISTANCE
KW - Epidemiology
KW - IN-SILICO EXPLORATION
KW - NEMATODE PARASITES
KW - GENETIC-PARAMETERS
KW - TELADORSAGIA-CIRCUMCINCTA
KW - WORM CONTROL
KW - CONTROL STRATEGIES
KW - Modelling
U2 - 10.1016/j.vetpar.2012.05.005
DO - 10.1016/j.vetpar.2012.05.005
M3 - Article
C2 - 22664340
VL - 189
SP - 238
EP - 249
JO - Veterinary Parasitology
JF - Veterinary Parasitology
IS - 2-4
ER -