Exploring Author Context for Detecting Intended vs Perceived Sarcasm

Silviu Vlad Oprea, Walid Magdy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract / Description of output

We investigate the impact of using author context on textual sarcasm detection. We define author context as the embedded representation of their historical posts on Twitter and suggest neural models that extract these representations. We experiment with two tweet datasets, one labelled manually for sarcasm, and the other via tag-based distant supervision. We achieve state-of-the-art performance on the second dataset, but not on the one labelled manually, indicating a difference between intended sarcasm, captured by distant supervision, and perceived sarcasm, captured by manual labelling.
Original languageEnglish
Title of host publicationProceedings of the 57th Annual Meeting of the Association for Computational Linguistics
EditorsAnna Korhonen, David Traum, Lluís Màrquez
Place of PublicationFlorence, Italy
PublisherAssociation for Computational Linguistics (ACL)
Pages2854–2859
Number of pages6
Publication statusPublished - 2 Aug 2019
Event57th Annual Meeting of the Association for Computational Linguistics - Fortezza da Basso, Florence, Italy
Duration: 28 Jul 20192 Aug 2019
Conference number: 57
http://www.acl2019.org/EN/index.xhtml

Conference

Conference57th Annual Meeting of the Association for Computational Linguistics
Abbreviated titleACL 2019
Country/TerritoryItaly
CityFlorence
Period28/07/192/08/19
Internet address

Fingerprint

Dive into the research topics of 'Exploring Author Context for Detecting Intended vs Perceived Sarcasm'. Together they form a unique fingerprint.

Cite this