Exploring data provenance in handwritten text recognition infrastructure: Sharing and reusing ground truth data, referencing models, and acknowledging contributions. Starting the conversation on how we could get it done

C. Annemieke Romein*, Tobias Hodel, Femke Gordijn, Joris van Zundert, Alix Chagué, Milan van Lange, Helle Strandgaard Jensen, Andy Stauder, Jake Purcell, Melissa Terras, Pauline van den Heuvel, Carlijn Keijzer, Achim Rabus, Chantal Sitaram, Aakriti Bhatia, Katrien Depuydt, Mary Aderonke Afolabi, Anastasiia Anikina, Elisa Bastianello, Lukas Vincent BenzingerArno Bosse, David Brown, Ashleigh Charlton, André Nilsson Dannevig, Klaas van Gelder, Sabine C. P. J. Go, Marcus J.C. Goh, Silvia Gstrein, Sewa Hasan, Stefan von der Heide, Maximilian Hindermann, Dorothee Huff, Ineke Huysman, Ali Idris, Liesbeth Keijser, Simon Kemper, Sanne Koenders, Erika Kuijpers, Lisette Rønsig Larsen, Sven Lepa, Tommy O. Link, Annalies van Nispen, Joe Nockels, Laura M. van Noort, Joost Johannes Oosterhuis, Vivien Popken, María Estrella Puertollano, Joosep J. Puusaag, Ahmed Sheta, Lex Stoop, Ebba Strutzenbladh, Nicoline van der Sijs, Jan Paul van der Spek, Barry Benaissa Trouw, Geertrui Van Synghel, Vladimir Vuckovic, Heleen Wilbrink, Sonia Weiss, David Joseph Wrisley, Riet Zweistra

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

This paper discusses best practices for sharing and reusing Ground Truth in Handwritten Text Recognition infrastructures, and ways to reference and acknowledge contributions to the creation and enrichment of data within these Machine Learning systems. We discuss how one can publish Ground Truth data in a repository and, subsequently, inform others. Furthermore, we suggest appropriate citation methods for HTR data, models, and contributions made by volunteers. Moreover, when using digitised sources (digital facsimiles), it becomes increasingly important to distinguish between the physical object and the digital collection. These topics all relate to the proper acknowledgement of labour put into digitising, transcribing, and sharing Ground Truth HTR data. This also points to broader issues surrounding the use of Machine Learning in archival and library contexts, and how the community should begin to
acknowledge and record both contributions and data provenance.
Original languageEnglish
Article number10403
Pages (from-to)1-26
Number of pages26
JournalJournal of Data Mining and Digital Humanities
VolumeHistorical Documents and automatic text recognition
DOIs
Publication statusPublished - 18 Mar 2024

Keywords / Materials (for Non-textual outputs)

  • automatic text recognition
  • handwritten text recognition
  • data publication
  • open data
  • data curation
  • ground truth
  • sharing

Fingerprint

Dive into the research topics of 'Exploring data provenance in handwritten text recognition infrastructure: Sharing and reusing ground truth data, referencing models, and acknowledging contributions. Starting the conversation on how we could get it done'. Together they form a unique fingerprint.

Cite this