Abstract / Description of output
Background: Myocardial fibrosis is a key mechanism of left ventricular decompensation in aortic stenosis and can be quantified using cardiovascular magnetic resonance (CMR) measures such as extracellular volume fraction (ECV%). Outcomes following aortic valve intervention may be linked to the presence and extent of myocardial fibrosis.
Objectives: This study sought to determine associations between ECV% and markers of left ventricular decompensation and post-intervention clinical outcomes.
Methods: Patients with severe aortic stenosis underwent CMR, including ECV% quantification using modified Look-Locker inversion recovery–based T1 mapping and late gadolinium enhancement before aortic valve intervention. A central core laboratory quantified CMR parameters.
Results: Four-hundred forty patients (age 70 ± 10 years, 59% male) from 10 international centers underwent CMR a median of 15 days (IQR: 4 to 58 days) before aortic valve intervention. ECV% did not vary by scanner manufacturer, magnetic field strength, or T1 mapping sequence (all p > 0.20). ECV% correlated with markers of left ventricular decompensation including left ventricular mass, left atrial volume, New York Heart Association functional class III/IV, late gadolinium enhancement, and lower left ventricular ejection fraction (p < 0.05 for all), the latter 2 associations being independent of all other clinical variables (p = 0.035 and p < 0.001). After a median of 3.8 years (IQR: 2.8 to 4.6 years) of follow-up, 52 patients had died, 14 from adjudicated cardiovascular causes. A progressive increase in all-cause mortality was seen across tertiles of ECV% (17.3, 31.6, and 52.7 deaths per 1,000 patient-years; log-rank test; p = 0.009). Not only was ECV% associated with cardiovascular mortality (p = 0.003), but it was also independently associated with all-cause mortality following adjustment for age, sex, ejection fraction, and late gadolinium enhancement (hazard ratio per percent increase in ECV%: 1.10; 95% confidence interval [1.02 to 1.19]; p = 0.013).
Conclusions: In patients with severe aortic stenosis scheduled for aortic valve intervention, an increased ECV% is a measure of left ventricular decompensation and a powerful independent predictor of mortality.
Objectives: This study sought to determine associations between ECV% and markers of left ventricular decompensation and post-intervention clinical outcomes.
Methods: Patients with severe aortic stenosis underwent CMR, including ECV% quantification using modified Look-Locker inversion recovery–based T1 mapping and late gadolinium enhancement before aortic valve intervention. A central core laboratory quantified CMR parameters.
Results: Four-hundred forty patients (age 70 ± 10 years, 59% male) from 10 international centers underwent CMR a median of 15 days (IQR: 4 to 58 days) before aortic valve intervention. ECV% did not vary by scanner manufacturer, magnetic field strength, or T1 mapping sequence (all p > 0.20). ECV% correlated with markers of left ventricular decompensation including left ventricular mass, left atrial volume, New York Heart Association functional class III/IV, late gadolinium enhancement, and lower left ventricular ejection fraction (p < 0.05 for all), the latter 2 associations being independent of all other clinical variables (p = 0.035 and p < 0.001). After a median of 3.8 years (IQR: 2.8 to 4.6 years) of follow-up, 52 patients had died, 14 from adjudicated cardiovascular causes. A progressive increase in all-cause mortality was seen across tertiles of ECV% (17.3, 31.6, and 52.7 deaths per 1,000 patient-years; log-rank test; p = 0.009). Not only was ECV% associated with cardiovascular mortality (p = 0.003), but it was also independently associated with all-cause mortality following adjustment for age, sex, ejection fraction, and late gadolinium enhancement (hazard ratio per percent increase in ECV%: 1.10; 95% confidence interval [1.02 to 1.19]; p = 0.013).
Conclusions: In patients with severe aortic stenosis scheduled for aortic valve intervention, an increased ECV% is a measure of left ventricular decompensation and a powerful independent predictor of mortality.
Original language | English |
---|---|
Pages (from-to) | 304-316 |
Journal | Journal of the American College of Cardiology |
Volume | 75 |
Issue number | 3 |
Early online date | 20 Jan 2020 |
DOIs | |
Publication status | Published - 28 Jan 2020 |
Fingerprint
Dive into the research topics of 'Extracellular Myocardial Volume in Patients With Aortic Stenosis'. Together they form a unique fingerprint.Profiles
-
Marc Dweck
- Deanery of Clinical Sciences - Personal Chair of Clinical Cardiology
- Centre for Cardiovascular Science
- Edinburgh Imaging
Person: Academic: Research Active (Research Assistant)