Extreme components analysis

Max Welling, Christopher Williams, Felix V Agakov

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Principal components analysis (PCA) is one of the most widely used techniques in machine learning and data mining. Minor components analysis (MCA) is less well known, but can also play an important role in the presence of constraints on the data distribution. In this paper we present a probabilistic model for “extreme components analysis” (XCA) which at the maximum likelihood solution extracts an optimal combination of principal and minor components. For a given number of components, the log-likelihood of the XCA model is guaranteed to be larger or equal than that of the probabilistic models for PCA and MCA. We describe an efficient algorithm to solve for the globally optimal solution. For log-convex spectra we prove that the solution consists of principal components only, while for log-concave spectra the solution consists of minor components. In general, the solution admits a combination of both. In experiments we explore the properties of XCA on some synthetic and real-world datasets.
Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 16 (NIPS 2003)
PagesNone
Number of pages8
Publication statusPublished - 2003

Fingerprint

Dive into the research topics of 'Extreme components analysis'. Together they form a unique fingerprint.

Cite this