Abstract / Description of output
The SARS-CoV-2 virus is primarily transmitted through virus-laden fluid particles ejected from the mouth of infected people. Face covers can mitigate the risk of virus transmission but their outward effectiveness is not fully ascertained. Objective: by using a background oriented schlieren technique, we aim to investigate the air flow ejected by a person while quietly and heavily breathing, while coughing, and with different face covers. Results: we found that all face covers without an outlet valve reduce the front flow through by at least 63% and perhaps as high as 86% if the unfiltered cough jet distance was resolved to the anticipated maximum distance of 2-3 m. However, surgical and handmade masks, and face shields, generate significant leakage jets that may present major hazards. Conclusions: the effectiveness of the masks should mostly be considered based on the generation of secondary jets rather than on the ability to mitigate the front throughflow.
Original language | English |
---|---|
Journal | IEEE Open Journal of Engineering in Medicine and Biology |
DOIs | |
Publication status | Published - 20 Jan 2021 |
Keywords / Materials (for Non-textual outputs)
- Covid-19 pandemic
- face coverings
- face masks
- aerosol dispersal
- aerosol generating procedures