Factorial switching Kalman filters for condition monitoring in neonatal intensive care

Christopher K. I. Williams, John Quinn, Neil McIntosh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The observed physiological dynamics of an infant receiving intensive care are affected by many possible factors, including interventions to the baby, the operation of the monitoring equipment and the state of health. The Factorial Switching Kalman Filter can be used to infer the presence of such factors from a sequence of observations, and to estimate the true values where these observations have been corrupted. We apply this model to clinical time series data and show it to be effective in identifying a number of artifactual and physiological patterns.
Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 18
PublisherMIT Press
Pages1513-1520
Number of pages8
Publication statusPublished - 2006

Fingerprint

Dive into the research topics of 'Factorial switching Kalman filters for condition monitoring in neonatal intensive care'. Together they form a unique fingerprint.

Cite this