Fast solvers for optimal control problems from pattern formation

Martin Stoll, John Pearson, Philip K. Maini

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

The modeling of pattern formation in biological systems using various models of reaction–diffusion type has been an active research topic for many years. We here look at a parameter identification (or PDE-constrained optimization) problem where the Schnakenberg and Gierer–Meinhardt equations, two well-known pattern formation models, form the constraints to an objective function. Our main focus is on the efficient solution of the associated nonlinear programming problems via a Lagrange–Newton scheme. In particular we focus on the fast and robust solution of the resulting large linear systems, which are of saddle point form. We illustrate this by considering several two- and three-dimensional setups for both models. Additionally, we discuss an image-driven formulation that allows us to identify parameters of the model to match an observed quantity obtained from an image.
Original languageEnglish
Pages (from-to)27-45
Number of pages19
JournalJournal of Computational Physics
Volume304
Early online date13 Oct 2015
DOIs
Publication statusPublished - 1 Jan 2016

Fingerprint

Dive into the research topics of 'Fast solvers for optimal control problems from pattern formation'. Together they form a unique fingerprint.

Cite this