Fast-spiking, parvalbumin+ GABAergic interneurons: From cellular design to microcircuit function

Hua Hu, Jian Gan, Peter Jonas

Research output: Contribution to journalReview articlepeer-review

Abstract / Description of output

The success story of fast-spiking, parvalbumin-positive (PV+) GABAergic interneurons (GABA, γ-aminobutyric acid) in the mammalian central nervous system is noteworthy. In 1995, the properties of these interneurons were completely unknown. Twenty years later, thanks to the massive use of subcellular patch-clamp techniques, simultaneous multiple-cell recording, optogenetics, in vivo measurements, and computational approaches, our knowledge about PV+ interneurons became more extensive than for several types of pyramidal neurons. These findings have implications beyond the “small world” of basic research on GABAergic cells. For example, the results provide a first proof of principle that neuroscientists might be able to close the gaps between the molecular, cellular, network, and behavioral levels, representing one of the main challenges at the present time. Furthermore, the results may form the basis for PV+ interneurons as therapeutic targets for brain disease in the future. However, much needs to be learned about the basic function of these interneurons before clinical neuroscientists will be able to use PV+ interneurons for therapeutic purposes.
Original languageEnglish
Article number1255263
Number of pages14
JournalScience
Volume345
Issue number6196
Early online date31 Jul 2014
DOIs
Publication statusPublished - 1 Aug 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'Fast-spiking, parvalbumin+ GABAergic interneurons: From cellular design to microcircuit function'. Together they form a unique fingerprint.

Cite this