Abstract / Description of output
Original language | English |
---|---|
Pages (from-to) | 255-263 |
Number of pages | 9 |
Journal | Nature Immunology |
Volume | 12 |
Issue number | 3 |
Early online date | 30 Jan 2011 |
DOIs | |
Publication status | Published - 1 Mar 2011 |
Keywords / Materials (for Non-textual outputs)
- cytokine
- gamma interferon
- interleukin 17
- interleukin 23
- allergic encephalomyelitis
- animal cell
- animal experiment
- animal model
- animal tissue
- article
- candidiasis
- CD4+ T lymphocyte
- cell fate
- controlled study
- gene mapping
- genetic transcription
- helper cell
- in vivo study
- inflammation
- mouse
- nonhuman
- priority journal
- Animals
- Encephalomyelitis, Autoimmune, Experimental
- Flow Cytometry
- Genes, Reporter
- Inflammation
- Interferon-gamma
- Interleukin-17
- Mice
- Mice, Knockout
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- T-Lymphocytes
- T-helper 17 cells
Fingerprint
Dive into the research topics of 'Fate mapping of IL-17-producing T cells in inflammatory responses'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Nature Immunology, Vol. 12, No. 3, 01.03.2011, p. 255-263.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Fate mapping of IL-17-producing T cells in inflammatory responses
AU - Hirota, K.
AU - Duarte, J.H.
AU - Veldhoen, M.
AU - Hornsby, E.
AU - Li, Y.
AU - Ahlfors, H.
AU - Wilhelm, C.
AU - Tolaini, M.
AU - Menzel, U.
AU - Garefalaki, A.
AU - Potocnik, A.J.
AU - Stockinger, B.
AU - Cua, D.J.
N1 - Cited By :283 Export Date: 11 March 2015 CODEN: NIAMC Correspondence Address: Potocnik, A. J.; Division of Molecular Immunology, Medical Research Council National Institute for Medical Research, Mill Hill, London, United Kingdom; email: [email protected] Chemicals/CAS: gamma interferon, 82115-62-6; Interferon-gamma, 82115-62-6; Interleukin-17 References: Harrington, L.E., Hatton, R.D., Mangan, P.R., Turner, H., Murphy, T.L., Murphy, K.M., Weaver, C.T., Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages (2005) Nature Immunology, 6 (11), pp. 1123-1132. , DOI 10.1038/ni1254, PII N1254; Park, H., Li, Z., Yang, X.O., Chang, S.H., Nurieva, R., Wang, Y.-H., Wang, Y., Dong, C., A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17 (2005) Nature Immunology, 6 (11), pp. 1133-1141. , DOI 10.1038/ni1261, PII N1261; Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M., Stockinger, B., TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells (2006) Immunity, 24 (2), pp. 179-189. , DOI 10.1016/j.immuni.2006.01.001, PII S1074761306000045; Ivanov, I.I., McKenzie, B.S., Zhou, L., Tadokoro, C.E., Lepelley, A., Lafaille, J.J., Cua, D.J., Littman, D.R., The Orphan Nuclear Receptor RORγt Directs the Differentiation Program of Proinflammatory IL-17+ T Helper Cells (2006) Cell, 126 (6), pp. 1121-1133. , DOI 10.1016/j.cell.2006.07.035, PII S0092867406011056; Yang, X.O., T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ (2008) Immunity, 28, pp. 29-39; Annunziato, F., Cosmi, L., Santarlasci, V., Maggi, L., Liotta, F., Mazzinghi, B., Parente, E., Romagnani, S., Phenotypic and functional features of human Th17 cells (2007) Journal of Experimental Medicine, 204 (8), pp. 1849-1861. , http://www.jem.org/cgi/reprint/204/8/1849, DOI 10.1084/jem.20070663; Bending, D., Highly purifed Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice (2009) J. Clin. Invest., 119, pp. 565-572; Lee, Y.K., Late developmental plasticity in the T helper 17 lineage (2009) Immunity, 30, pp. 92-107; Martin-Orozco, N., Th17 cells promote pancreatic infammation but only induce diabetes effciently in lymphopenic hosts after conversion into Th1 cells (2009) Eur. J. Immunol., 39, pp. 216-224; Shi, G., Phenotype switching by infammation-inducing polarized Th17 cells, but not by Th1 cells (2008) J. Immunol., 181, pp. 7205-7213; Bettelli, E., Kuchroo, V.K., IL-12- and IL-23-induced T helper cell subsets: Birds of the same feather flock together (2005) Journal of Experimental Medicine, 201 (2), pp. 169-171. , DOI 10.1084/jem.20042279; Lexberg, M.H., Th memory for interleukin-17 expression is stable in vivo (2008) Eur. J. Immunol., 38, pp. 2654-2664; Hirota, K., Martin, B., Veldhoen, M., Development regulation and functional capacities of Th17 cells (2010) Semin. Immunopathol., 32, pp. 3-16; Spits, H., Di Santo, J.P., The expanding family of innate lymphoid cells: Regulators and effectors of immunity and tissue remodeling (2011) Nat Immunol., 12, pp. 21-27; Luger, D., Silver, P.B., Tang, J., Cua, D., Chen, Z., Iwakura, Y., Bowman, E.P., Caspi, R.R., Either a Th17 or a Th1 effector response can drive autoimmunity: Conditions of disease induction affect dominant effector category (2008) Journal of Experimental Medicine, 205 (4), pp. 799-810. , http://www.jem.org/cgi/reprint/205/4/799, DOI 10.1084/jem.20071258; Bettelli, E., Pagany, M., Weiner, H.L., Linington, C., Sobel, R.A., Kuchroo, V.K., Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis (2003) Journal of Experimental Medicine, 197 (9), pp. 1073-1081. , DOI 10.1084/jem.20021603; McGeachy, M.J., The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo (2009) Nat Immunol., 10, pp. 314-324; Zhou, L., Chong, M.M., Littman, D.R., Plasticity of CD4+ T cell lineage differentiation (2009) Immunity, 30, pp. 646-655; De Beaucoudrey, L., Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells (2008) J. Exp. Med., 205, pp. 1543-1550; Milner, J.D., Brenchley, J.M., Laurence, A., Freeman, A.F., Hill, B.J., Elias, K.M., Kanno, Y., Douek, D.C., Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome (2008) Nature, 452 (7188), pp. 773-776. , DOI 10.1038/nature06764, PII NATURE06764; Kisand, K., Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines (2010) J. Exp. Med., 207, pp. 299-308; O'Shea, J.J., Paul, W.E., Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells (2010) Science, 327, pp. 1098-1102; Murphy, K.M., Stockinger, B., Effector T cell plasticity: Fexibility in the fact of changing circumstances (2010) Nat Immunol., 11, pp. 674-680; Mukasa, R., Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage (2010) Immunity, 32, pp. 616-627; Wei, G., Global mapping of H3K4me3 and H3K27me3 reveals specifcity and plasticity in lineage fate determination of differentiating CD4+ T cells (2009) Immunity, 30, pp. 155-167; Croxford, A.L., Kurschus, F.C., Waisman, A., Cutting edge: An IL-17F-CreEYFP reporter mouse allows fate mapping of Th17 cells (2009) J. Immunol., 182, pp. 1237-1241; Chang, S.H., Dong, C., IL-17F: Regulation, signaling and function in infammation (2009) Cytokine, 46, pp. 7-11; Ahern, P.P., Interleukin-23 drives intestinal infammation through direct activity on T cells (2010) Immunity, 33, pp. 279-288; Veldhoen, M., Hocking, R.J., Flavell, R.A., Stockinger, B., Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease (2006) Nature Immunology, 7 (11), pp. 1151-1156. , DOI 10.1038/ni1391, PII NI1391; Ponomarev, E.D., Shriver, L.P., Maresz, K., Pedras-Vasconcelos, J., Verthelyi, D., Dittel, B.N., GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis (2007) Journal of Immunology, 178 (1), pp. 39-48; McQualter, J.L., Granulocyte macrophage colony-stimulating factor: A new putative therapeutic target in multiple sclerosis (2001) J. Exp. Med., 194, pp. 873-882; Boniface, K., Human Th17 cells comprise heterogeneous subsets including IFN-γ-producing cells with distinct properties from the Th1 lineage (2010) J. Immunol., 185, pp. 679-687; Stevens, E.A., Mezrich, J.D., Bradfeld, C.A., The aryl hydrocarbon receptor: A perspective on potential roles in the immune system (2009) Immunology, 127, pp. 299-311; Szabo, S.J., Dighe, A.S., Gubler, U., Murphy, K.M., Regulation of the interleukin (IL)-12R β2 subunit expression in developing T helper 1 (Th1) and Th2 cells (1997) Journal of Experimental Medicine, 185 (5), pp. 817-824. , DOI 10.1084/jem.185.5.817; Hegazy, A.N., Interferons direct Th2 cell reprogramming to generate a stable GATA-3+T-bet+ cell subset with combined Th2 and Th1 cell functions (2010) Immunity, 32, pp. 116-128; Bailey-Bucktrout, S.L., Cutting edge: Central nervous system plasmacytoid dendritic cells regulate the severity of relapsing experimental autoimmune encephalomyelitis (2008) J. Immunol., 180, pp. 6457-6461; Isaksson, M., Plasmacytoid DC promote priming of autoimmune Th17 cells and EAE (2009) Eur. J. Immunol., 39, pp. 2925-2935; Shinohara, M.L., Kim, J.H., Garcia, V.A., Cantor, H., Engagement of the type i interferon receptor on dendritic cells inhibits T helper 17 cell development: Role of intracellular osteopontin (2008) Immunity, 29, pp. 68-78; Axtell, R.C., T helper type 1 and 17 cells determine effcacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis (2010) Nat Med., 16, pp. 406-412; Stromnes, I.M., Cerretti, L.M., Liggitt, D., Harris, R.A., Goverman, J.M., Differential regulation of central nervous system autoimmunity by T H1 and TH17 cells (2008) Nature Medicine, 14 (3), pp. 337-342. , DOI 10.1038/nm1715, PII NM1715; Lees, J.R., Regional CNS responses to IFN-γ determine lesion localization patterns during EAE pathogenesis (2008) J. Exp. Med., 205, pp. 2633-2642; Steinman, L., A rush to judgment on Th17 (2008) Journal of Experimental Medicine, 205 (7), pp. 1517-1522. , http://www.jem.org/cgi/reprint/205/7/1517, DOI 10.1084/jem.20072066; O'Connor, R.A., Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis (2008) J. Immunol., 181, pp. 3750-3754; McGeachy, M.J., Bak-Jensen, K.S., Chen, Y., Tato, C.M., Blumenschein, W., McClanahan, T., Cua, D.J., TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology (2007) Nature Immunology, 8 (12), pp. 1390-1397. , DOI 10.1038/ni1539, PII NI1539; Suryani, S., Sutton, I., An interferon-γ-producing Th1 subset is the major source of IL-17 in experimental autoimmune encephalitis (2007) Journal of Neuroimmunology, 183 (1-2), pp. 96-103. , DOI 10.1016/j.jneuroim.2006.11.023, PII S0165572806004814; McGeachy, M.J., Cua, D.J., Th17 Cell Differentiation: The Long and Winding Road (2008) Immunity, 28 (4), pp. 445-453. , DOI 10.1016/j.immuni.2008.03.001, PII S1074761308001155; Michel, M.L., Identifcation of an IL-17-producing NK1.1- iNKT cell population involved in airway neutrophilia (2007) J. Exp. Med., 204, pp. 995-1001; Ghoreschi, K., Generation of pathogenic TH17 cells in the absence of TGF-beta signalling (2010) Nature, 467, pp. 967-971; Pepper, M., Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells (2010) Nat Immunol., 11, pp. 83-89; Sutton, C., Brereton, C., Keogh, B., Mills, K.H.G., Lavelle, E.C., A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis (2006) Journal of Experimental Medicine, 203 (7), pp. 1685-1691. , http://www.jem.org/cgi/reprint/203/7/1685, DOI 10.1084/jem.20060285; Shimshek, D.R., Kim, J., Hubner, M.R., Spergel, D.J., Buchholz, F., Casanova, E., Stewart, A.F., Sprengel, R., Codon-improved Cre recombinase (iCre) expression in the mouse (2002) Genesis, 32 (1), pp. 19-26. , DOI 10.1002/gene.10023; Srinivas, S., Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus (2001) BMC Dev. Biol., 1, p. 4
PY - 2011/3/1
Y1 - 2011/3/1
N2 - Here we describe a reporter mouse strain designed to map the fate of cells that have activated interleukin 17A (IL-17A). We found that IL-17-producing helper T cells (T 17 cells) had distinct plasticity in different inflammatory settings. Chronic inflammatory conditions in experimental autoimmune encephalomyelitis (EAE) caused a switch to alternative cytokines in T 17 cells, whereas acute cutaneous infection with Candida albicans did not result in the deviation of T 17 cells to the production of alternative cytokines, although IL-17A production was shut off in the course of the infection. During the development of EAE, interferon-γ (IFN-γ) and other proinflammatory cytokines in the spinal cord were produced almost exclusively by cells that had produced IL-17 before their conversion by IL-23 ('ex-T 17 cells'). Thus, this model allows the actual functional fate of effector T cells to be related to T 17 developmental origin regardless of IL-17 expression.
AB - Here we describe a reporter mouse strain designed to map the fate of cells that have activated interleukin 17A (IL-17A). We found that IL-17-producing helper T cells (T 17 cells) had distinct plasticity in different inflammatory settings. Chronic inflammatory conditions in experimental autoimmune encephalomyelitis (EAE) caused a switch to alternative cytokines in T 17 cells, whereas acute cutaneous infection with Candida albicans did not result in the deviation of T 17 cells to the production of alternative cytokines, although IL-17A production was shut off in the course of the infection. During the development of EAE, interferon-γ (IFN-γ) and other proinflammatory cytokines in the spinal cord were produced almost exclusively by cells that had produced IL-17 before their conversion by IL-23 ('ex-T 17 cells'). Thus, this model allows the actual functional fate of effector T cells to be related to T 17 developmental origin regardless of IL-17 expression.
KW - cytokine
KW - gamma interferon
KW - interleukin 17
KW - interleukin 23
KW - allergic encephalomyelitis
KW - animal cell
KW - animal experiment
KW - animal model
KW - animal tissue
KW - article
KW - candidiasis
KW - CD4+ T lymphocyte
KW - cell fate
KW - controlled study
KW - gene mapping
KW - genetic transcription
KW - helper cell
KW - in vivo study
KW - inflammation
KW - mouse
KW - nonhuman
KW - priority journal
KW - Animals
KW - Encephalomyelitis, Autoimmune, Experimental
KW - Flow Cytometry
KW - Genes, Reporter
KW - Inflammation
KW - Interferon-gamma
KW - Interleukin-17
KW - Mice
KW - Mice, Knockout
KW - Reverse Transcriptase Polymerase Chain Reaction
KW - Signal Transduction
KW - T-Lymphocytes
KW - T-helper 17 cells
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-79951677394&partnerID=8YFLogxK
U2 - 10.1038/ni.1993
DO - 10.1038/ni.1993
M3 - Article
AN - SCOPUS:79951677394
SN - 1529-2908
VL - 12
SP - 255
EP - 263
JO - Nature Immunology
JF - Nature Immunology
IS - 3
ER -