Abstract / Description of output
Bacterial cellulose (BC) discovered by A J Brown in 1886 is somewhat similar to plant cellulose. It has the same molecular formula, but is chemically more pure as it is free from other plant polysaccharides such as hemicellulose and lignin. It has a higher tensile strength, can be grown into almost any shape, has a superior water retention capacity, and a considerably finer architecture.
Properties such as these have made bacterial cellulose an ideal ingredient in foods such as nata de coco, a sweet jelly with increased fibrousness, chewiness and texture through the addition of bacterial cellulose. It has also been used as a thickener and stabiliser to help retain the viscosity of softer foods.
More recently, the properties of BC have gained the attention of materials scientists in the biomedical sectors where it is used as a wound dressing material, in the pulp and paper industries where it is used as an ultra-stiff paper base, and in coatings industries, where it can be used to stabilise coating suspensions.
Properties such as these have made bacterial cellulose an ideal ingredient in foods such as nata de coco, a sweet jelly with increased fibrousness, chewiness and texture through the addition of bacterial cellulose. It has also been used as a thickener and stabiliser to help retain the viscosity of softer foods.
More recently, the properties of BC have gained the attention of materials scientists in the biomedical sectors where it is used as a wound dressing material, in the pulp and paper industries where it is used as an ultra-stiff paper base, and in coatings industries, where it can be used to stabilise coating suspensions.
Original language | English |
---|---|
Pages | 44-46 |
Volume | 27 |
No. | 7 |
Specialist publication | Materials World |
Publication status | Published - 1 Jul 2019 |