Finite size corrections in the random energy model and the replica approach

Peter Mottishaw

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

We present a systematic and exact way of computing finite size corrections for the random energy model, in its low temperature phase. We obtain explicit (though complicated) expressions for the finite size corrections of the overlap functions. In its low temperature phase, the random energy model is known to exhibit Parisi's broken symmetry of replicas. The finite size corrections given by our exact calculation can be reproduced using replicas if we make specific assumptions about the fluctuations (with negative variances!) of the number and sizes of the blocks when replica symmetry is broken. As an alternative we show that the exact expression for the non-integer moments of the partition function can be written in terms of coupled contour integrals over what can be thought of as 'complex replica numbers'. Parisi's one step replica symmetry breaking arises naturally from the saddle point of these integrals without making any ansatz or using the replica method. The fluctuations of the 'complex replica numbers' near the saddle point in the imaginary direction correspond to the negative variances we observed in the replica calculation. Finally our approach allows one to see why some apparently diverging series or integrals are harmless.
Original languageEnglish
Article numberP01021
Number of pages24
Journal Journal of Statistical Mechanics: Theory and Experiment
Issue number1
Publication statusPublished - 19 Jan 2015

Keywords / Materials (for Non-textual outputs)

  • replica method
  • disordered systems
  • spin glasses


Dive into the research topics of 'Finite size corrections in the random energy model and the replica approach'. Together they form a unique fingerprint.

Cite this