TY - GEN
T1 - First-order progression beyond local-effect and normal actions
AU - Liu, Daxin
AU - Claßen, Jens
N1 - Conference code: 33
PY - 2024/5/14
Y1 - 2024/5/14
N2 - One of the fundamental problems in reasoning about action is progression, which is to update a knowledge base according to the effects of an action into another knowledge base that retains all proper information. The problem is notoriously challenging, as in general, it requires second-order logic. Efforts have been made to find fragments where progression is first-order definable. Liu and Lakemeyer showed that for actions that have only local effects, progression is always first-order definable. They also generalized the result to so-called normal actions, that allow for non-local effects, as long as the affected fluent predicates only depend on local-effect ones, under certain restrictions on the knowledge base. In addition, they showed that for so-called proper+ knowledge bases, progression for normal actions can be efficient under reasonable assumptions. In this paper, we consider a larger class of theories, called the acyclic ones, that strictly subsumes normal actions. In such theories, dependencies between non-local effect fluent predicates are allowed, as long as they do not contain any cycles. We prove progression to be equally first-order definable for this class. Furthermore, under similar but stronger assumptions than those made by Liu and Lakemeyer, we show that progression is efficient as well.
AB - One of the fundamental problems in reasoning about action is progression, which is to update a knowledge base according to the effects of an action into another knowledge base that retains all proper information. The problem is notoriously challenging, as in general, it requires second-order logic. Efforts have been made to find fragments where progression is first-order definable. Liu and Lakemeyer showed that for actions that have only local effects, progression is always first-order definable. They also generalized the result to so-called normal actions, that allow for non-local effects, as long as the affected fluent predicates only depend on local-effect ones, under certain restrictions on the knowledge base. In addition, they showed that for so-called proper+ knowledge bases, progression for normal actions can be efficient under reasonable assumptions. In this paper, we consider a larger class of theories, called the acyclic ones, that strictly subsumes normal actions. In such theories, dependencies between non-local effect fluent predicates are allowed, as long as they do not contain any cycles. We prove progression to be equally first-order definable for this class. Furthermore, under similar but stronger assumptions than those made by Liu and Lakemeyer, we show that progression is efficient as well.
KW - knowledge representation
KW - reasoning about action
KW - situation calculus
M3 - Conference contribution
BT - Proceedings of the 33rd International Joint Conference on Artificial Intelligence
PB - IJCAI Organization
T2 - The 33rd International Joint Conference on Artificial Intelligence
Y2 - 3 August 2024 through 9 August 2024
ER -