Projects per year

## Abstract

We study the monoidal dagger category of Hilbert C*-modules over a commutative C*-algebra from the perspective of categorical quantum mechanics. The dual objects are the finitely presented projective Hilbert C*-modules. Special dagger Frobenius structures correspond to bundles of uniformly finite-dimensional C*-algebras. A monoid is dagger Frobenius over the base if and only if it is dagger Frobenius over its centre and the centre is dagger Frobenius over the base. We characterise the commutative dagger Frobenius structures as finite coverings, and give nontrivial examples of both commutative and central dagger Frobenius structures. Subobjects of the tensor unit correspond to clopen subsets of the Gelfand spectrum of the C*-algebra, and we discuss dagger kernels.

Original language | English |
---|---|

Number of pages | 38 |

Journal | Communications in Mathematical Physics |

Early online date | 7 Jun 2018 |

DOIs | |

Publication status | E-pub ahead of print - 7 Jun 2018 |

## Fingerprint Dive into the research topics of 'Frobenius structures over Hilbert C*-modules'. Together they form a unique fingerprint.

## Projects

- 1 Finished