Abstract
We generalize the Jacob-Wick helicity formalism, which applies to sequential decays, to effective field theories of rare decays of the type B→KJK(→Kπ)¯ℓ1ℓ2. This is achieved by reinterpreting local interaction vertices ¯bΓ′μ1ns¯ℓΓμ1nℓ as a coherent sum of 1→2 processes mediated by particles whose spin ranges between zero and n. We illustrate the framework by deriving the full angular distributions for ¯B→¯Kℓ1¯ℓ2 and ¯B→¯K∗(→¯Kπ)ℓ1¯ℓ2 for the complete dimension-six effective Hamiltonian for nonequal lepton masses. Amplitudes and decay rates are expressed in terms of Wigner rotation matrices, leading naturally to the method of moments in various forms. We discuss how higher-spin operators and QED corrections alter the standard angular distribution used throughout the literature, potentially leading to differences between the method of moments and the likelihood fits. We propose to diagnose these effects by assessing higher angular moments. These could be relevant in investigating the nature of the current LHCb anomalies in RK=B(B→Kμ+μ−)/B(B→Ke+e−) as well as angular observables in B→K∗μ+μ−.
Original language | English |
---|---|
Article number | 054008 |
Pages (from-to) | 1-29 |
Number of pages | 29 |
Journal | Physical Review D, particles, fields, gravitation, and cosmology |
Volume | 93 |
Issue number | 5 |
DOIs | |
Publication status | Published - 1 Mar 2016 |
Keywords
- hep-ph
Fingerprint
Dive into the research topics of 'Generalized helicity formalism, higher moments, and the B→KJK(→Kπ)¯¯¯ℓ1ℓ2 angular distributions'. Together they form a unique fingerprint.Profiles
-
Roman Zwicky
- School of Physics and Astronomy - Personal Chair of Theoretical High Energy Physics
Person: Academic: Research Active