Generating confidence intervals on biological networks

Thomas Thorne, Michael P H Stumpf*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Background: In the analysis of networks we frequently require the statistical significance of some network statistic, such as measures of similarity for the properties of interacting nodes. The structure of the network may introduce dependencies among the nodes and it will in general be necessary to account for these dependencies in the statistical analysis. To this end we require some form of Null model of the network: generally rewired replicates of the network are generated which preserve only the degree (number of interactions) of each node. We show that this can fail to capture important features of network structure, and may result in unrealistic significance levels, when potentially confounding additional information is available. Methods: We present a new network resampling Null model which takes into account the degree sequence as well as available biological annotations. Using gene ontology information as an illustration we show how this information can be accounted for in the resampling approach, and the impact such information has on the assessment of statistical significance of correlations and motif-abundances in the Saccharomyces cerevisiae protein interaction network. An algorithm, GOcardShuffle, is introduced to allow for the efficient construction of an improved Null model for network data. Results: We use the protein interaction network of S. cerevisiae; correlations between the evolutionary rates and expression levels of interacting proteins and their statistical significance were assessed for Null models which condition on different aspects of the available data. The novel GOcardShuffle approach results in a Null model for annotated network data which appears better to describe the properties of real biological networks. Conclusion: An improved statistical approach for the statistical analysis of biological network data, which conditions on the available biological information, leads to qualitatively different results compared to approaches which ignore such annotations. In particular we demonstrate the effects of the biological organization of the network can be sufficient to explain the observed similarity of interacting proteins.

Original languageEnglish
Article number467
JournalBMC Bioinformatics
Volume8
DOIs
Publication statusPublished - 30 Nov 2007

Fingerprint

Dive into the research topics of 'Generating confidence intervals on biological networks'. Together they form a unique fingerprint.

Cite this