TY - JOUR
T1 - Genome-wide association and genomic prediction of growth traits in the European flat oyster (Ostrea edulis)
AU - Penaloza, Carolina
AU - Barria Gonzalez, Agustin
AU - Papadopoulou, Athina
AU - Hooper, Chantelle
AU - Preston, Joanne
AU - Green, Matthew
AU - Helmer , Luke
AU - Hammerson, Jacob K.
AU - Nascimento-Schulze, Jennifer C.
AU - Kingdom, Centre for Environment Fisheries and Aquaculture Science (CEFAS)
AU - Minardi, Diana
AU - Gundappa, Manu Kumar
AU - Macqueen, Dan
AU - Hamilton, John
AU - Houston, Ross
AU - Bean, Tim
N1 - Funding Information:
The authors acknowledge funding from the Biotechnology and Biological Sciences Research Council (BBSRC), including Institute Strategic Programme grants (BBS/E/D/20002172, BBS/E/D/30002275 and BBS/E/D/10002070), a grant within the AquaLeap project (BB/S004181/1), funding from Sustainable Aquaculture Innovation Centre (SAIC), Blue Marine Foundation and National Fish and Wildlife Foundation (NFWF).
Publisher Copyright:
Copyright © 2022 Peñaloza, Barria, Papadopoulou, Hooper, Preston, Green, Helmer, Kean-Hammerson, Nascimento-Schulze, Minardi, Gundappa, Macqueen, Hamilton, Houston and Bean.
PY - 2022/8/2
Y1 - 2022/8/2
N2 - The European flat oyster (Ostrea edulis) is a bivalve mollusc that was once widely distributed across Europe and represented an important food resource for humans for centuries. Populations of O. edulis experienced a severe decline across their biogeographic range mainly due to overexploitation and disease outbreaks. To restore the economic and ecological benefits of European flat oyster populations, extensive protection and restoration efforts are in place within Europe. In line with the increasing interest in supporting restoration and oyster farming through the breeding of stocks with enhanced performance, the present study aimed to evaluate the potential of genomic selection for improving growth traits in a European flat oyster population obtained from successive mass-spawning events. Four growth-related traits were evaluated: total weight (TW), shell height (SH), shell width (SW) and shell length (SL). The heritability of the growth traits was in the low-moderate range, with estimates of 0.45, 0.37, 0.22, and 0.32 for TW, SH, SW and SL, respectively. A genome-wide association analysis revealed a largely polygenic architecture for the four growth traits, with two distinct QTLs detected on chromosome 4. To investigate whether genomic selection can be implemented in flat oyster breeding at a reduced cost, the utility of low-density SNP panels was assessed. Genomic prediction accuracies using the full density panel were high (> 0.83 for all traits). The evaluation of the effect of reducing the number of markers used to predict genomic breeding values revealed that similar selection accuracies could be achieved for all traits with 2K SNPs as for a full panel containing 4,577 SNPs. Only slight reductions in accuracies were observed at the lowest SNP density tested (i.e., 100 SNPs), likely due to a high relatedness between individuals being included in the training and validation sets during cross-validation. Overall, our results suggest that the genetic improvement of growth traits in oysters is feasible. Nevertheless, and although low-density SNP panels appear as a promising strategy for applying GS at a reduced cost, additional populations with different degrees of genetic relatedness should be assessed to derive estimates of prediction accuracies to be expected in practical breeding programmes.
AB - The European flat oyster (Ostrea edulis) is a bivalve mollusc that was once widely distributed across Europe and represented an important food resource for humans for centuries. Populations of O. edulis experienced a severe decline across their biogeographic range mainly due to overexploitation and disease outbreaks. To restore the economic and ecological benefits of European flat oyster populations, extensive protection and restoration efforts are in place within Europe. In line with the increasing interest in supporting restoration and oyster farming through the breeding of stocks with enhanced performance, the present study aimed to evaluate the potential of genomic selection for improving growth traits in a European flat oyster population obtained from successive mass-spawning events. Four growth-related traits were evaluated: total weight (TW), shell height (SH), shell width (SW) and shell length (SL). The heritability of the growth traits was in the low-moderate range, with estimates of 0.45, 0.37, 0.22, and 0.32 for TW, SH, SW and SL, respectively. A genome-wide association analysis revealed a largely polygenic architecture for the four growth traits, with two distinct QTLs detected on chromosome 4. To investigate whether genomic selection can be implemented in flat oyster breeding at a reduced cost, the utility of low-density SNP panels was assessed. Genomic prediction accuracies using the full density panel were high (> 0.83 for all traits). The evaluation of the effect of reducing the number of markers used to predict genomic breeding values revealed that similar selection accuracies could be achieved for all traits with 2K SNPs as for a full panel containing 4,577 SNPs. Only slight reductions in accuracies were observed at the lowest SNP density tested (i.e., 100 SNPs), likely due to a high relatedness between individuals being included in the training and validation sets during cross-validation. Overall, our results suggest that the genetic improvement of growth traits in oysters is feasible. Nevertheless, and although low-density SNP panels appear as a promising strategy for applying GS at a reduced cost, additional populations with different degrees of genetic relatedness should be assessed to derive estimates of prediction accuracies to be expected in practical breeding programmes.
KW - GWAS
KW - Ostrea edulis
KW - aquaculture
KW - genomic selection
KW - growth
KW - oyster
U2 - 10.3389/fgene.2022.926638
DO - 10.3389/fgene.2022.926638
M3 - Article
SN - 1664-8021
VL - 13
JO - Frontiers in Genetics
JF - Frontiers in Genetics
M1 - 926638
ER -