Abstract
A standard quadratic program is an optimization problem that consists of minimizing a (nonconvex) quadratic form over the unit simplex. We focus on reformulating a standard quadratic program as a mixed integer linear programming problem. We propose two alternative formulations. Our rst formulation is based on casting a standard quadratic program as a linear program with complementarity constraints. We then employ binary variables to linearize the complementarity constraints. For the second formulation, we rst derive an overestimating function of the objective function and establish its tightness at any global minimizer. We then linearize the overestimating function using binary variables and obtain our second formulation. For both formulations, we propose a set of valid inequalities. Our extensive computational results illustrate that the proposed mixed integer linear programming reformulations signicantly outperform other global solution approaches. On larger instances, we usually observe improvements of several orders of magnitude.
Original language | English |
---|---|
Number of pages | 40 |
Journal | Journal of Global Optimization |
Publication status | Accepted/In press - 19 Mar 2021 |