Projects per year
Abstract / Description of output
We consider the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation (4NLS) on the circle. In particular, we prove global well-posedness of the renormalized 4NLS in negative Sobolev spaces H^s(T), s > -1/3, with enhanced uniqueness. The proof consists of two separate arguments. (i) We first prove global existence in H^s(T), s > -9/20, via the short-time Fourier restriction norm method. By following the argument in Guo-Oh for the cubic NLS, this also leads to non-existence of solutions for the (non-renormalized) 4NLS in negative Sobolev spaces. (ii) We then prove enhanced uniqueness in H^s(T), s > -1/3, by establishing an energy estimate for the difference of two solutions with the same initial condition. For this purpose, we perform an infinite iteration of normal form reductions on the H^s-energy functional, allowing us to introduce an infinite sequence of correction terms to the H^s-energy functional in the spirit of the I-method. In fact, the main novelty of this paper is this reduction of the H^s-energy functionals (for a single solution and for the difference of two solutions with the same initial condition) to sums of infinite series of multilinear terms of increasing degrees.
Original language | English |
---|---|
Pages (from-to) | 1-80 |
Number of pages | 80 |
Journal | Forum of Mathematics, Sigma |
Volume | 6 |
DOIs | |
Publication status | Published - 11 May 2018 |
Keywords / Materials (for Non-textual outputs)
- fourth order nonlinear Schrödinger equation
- biharmonic nonlinear Schrödinger equation
- short-time Fourier restriction norm method
- normal form reduction
- enhanced uniqueness
Fingerprint
Dive into the research topics of 'Global well-posedness of the periodic cubic fourth order NLS in negative Sobolev spaces'. Together they form a unique fingerprint.Projects
- 1 Finished
-
ProbDynDispEq - Probabilistic and Dynamical Study of Nonlinear Dispersive Equations
1/03/15 → 29/02/20
Project: Research
Profiles
-
Tadahiro Oh
- School of Mathematics - Personal Chair of Dispersive Equations
Person: Academic: Research Active