Glucose and lactate as metabolic constraints on presynaptic transmission at an excitatory synapse

Sarah J. Lucas, Christophe B. Michel, Vincenzo Marra, Joshua L. Smalley, Matthias H. Hennig, Bruce P. Graham, Ian D. Forsythe*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Key points: 

Synapses have high energy demands which increase during intense activity. We show that presynaptic terminals can utilise extracellular glucose or lactate to generate energy to maintain synaptic transmission.

Reducing energy substrates induces a metabolic stress: presynaptic ATP depletion impaired synaptic transmission through a reduction in the number of functional synaptic vesicle release sites and a slowing of vesicle pool replenishment, without a consistent change in release probability.

Metabolic function is compromised in many pathological conditions (e.g. stroke, traumatic brain injury and neurodegeneration). Knowledge of how synaptic transmission is constrained by metabolic stress, especially during intense brain activity, will provide insights to improve cognition following pathological insults. 


The synapse has high energy demands, which increase during intense activity. Presynaptic ATP production depends on substrate availability and usage will increase during activity, which in turn could influence transmitter release and information transmission. We investigated transmitter release at the mouse calyx of Held synapse using glucose or lactate (10, 1 or 0 mm) as the extracellular substrates while inducing metabolic stress. High-frequency stimulation (HFS) and recovery paradigms evoked trains of EPSCs monitored under voltage-clamp. Whilst postsynaptic intracellular ATP was stabilised by diffusion from the patch pipette, depletion of glucose increased EPSC depression during HFS and impaired subsequent recovery. Computational modelling of these data demonstrated a reduction in the number of functional release sites and slowed vesicle pool replenishment during metabolic stress, with little change in release probability. Directly depleting presynaptic terminal ATP impaired transmitter release in an analogous manner to glucose depletion. In the absence of glucose, presynaptic terminal metabolism could utilise lactate from the aCSF and this was blocked by inhibition of monocarboxylate transporters (MCTs). MCT inhibitors significantly suppressed transmission in low glucose, implying that lactate is a presynaptic substrate. Additionally, block of glycogenolysis accelerated synaptic transmission failure in the absence of extracellular glucose, consistent with supplemental supply of lactate by local astrocytes. We conclude that both glucose and lactate support presynaptic metabolism and that limited availability, exacerbated by high-intensity firing, constrains presynaptic ATP, impeding transmission through a reduction in functional presynaptic release sites as vesicle recycling slows when ATP levels are low. 

Original languageEnglish
Pages (from-to)1699–1721
Number of pages23
JournalJournal of Physiology
Early online date26 Mar 2018
DOIs
Publication statusE-pub ahead of print - 26 Mar 2018

Keywords

  • Calyx of Held
  • Cerebral metabolism
  • Excitatory postsynaptic current
  • Synaptic transmission

Fingerprint

Dive into the research topics of 'Glucose and lactate as metabolic constraints on presynaptic transmission at an excitatory synapse'. Together they form a unique fingerprint.

Cite this