TY - JOUR
T1 - Glycomics meets lipidomics--associations of N-glycans with classical lipids, glycerophospholipids, and sphingolipids in three European populations
AU - Igl, Wilmar
AU - Polasek, Ozren
AU - Gornik, Olga
AU - Knezevic, Ana
AU - Pucic, Maja
AU - Novokmet, Mislav
AU - Huffman, Jennifer
AU - Gnewuch, Carsten
AU - Liebisch, Gerhard
AU - Rudd, Pauline M.
AU - Campbell, Harry
AU - Wilson, James F.
AU - Rudan, Igor
AU - Gyllensten, Ulf
AU - Schmitz, Gerd
AU - Lauc, Gordan
PY - 2011
Y1 - 2011
N2 - Recently, high-throughput technologies have been made available which allow the measurement of a broad spectrum of glycomics and lipidomics parameters in many samples. The aim of this study was to apply these methods and investigate associations between 46 glycan and 183 lipid traits measured in blood of 2041 Europeans from three different local populations (Croatia - VIS cohort; Sweden - NSPHS cohort; Great Britain - ORCADES cohort). N-glycans have been analyzed with High Performance Liquid Chromatography (HPLC) and lipids with Electrospray Ionization Tandem Mass Spectrometry (ESI-MS/MS) covering sterol lipids, glycerolipids, glycerophospholipids and sphingolipids in eight subclasses. Overall, 8418 associations were calculated using linear mixed effect models adjusted for pedigree, sex, age and multiple testing. We found 330 significant correlations in VIS. Pearson's correlation coefficient r ranged from -0.27 to 0.34 with corresponding p-values between 1.45 × 10(-19) and 4.83 × 10(-6), indicating statistical significance. A total of 71 correlations in VIS could be replicated in NSPHS (r = [-0.19; 0.35], p = [4.16 × 10(-18); 9.38 × 10(-5)]) and 31 correlations in VIS were also found in ORCADES (r = [-0.20; 0.24], p = [2.69 × 10(-10); 7.55 × 10(-5)]). However, in total only 10 correlations between a subset of triantennary glycans and unsaturated phosphatidylcholine, saturated ceramide, and sphingomyelin lipids in VIS (r = [0.18; 0.34], p = [2.98 × 10(-21); 1.69 × 10(-06)]) could be replicated in both NSPHS and ORCADES. In summary, the results show strong and consistent associations between certain glycans and lipids in all populations, but also population-specific correlations which may be caused by environmental and genetic differences. These associations point towards potential interactive metabolic pathways.
AB - Recently, high-throughput technologies have been made available which allow the measurement of a broad spectrum of glycomics and lipidomics parameters in many samples. The aim of this study was to apply these methods and investigate associations between 46 glycan and 183 lipid traits measured in blood of 2041 Europeans from three different local populations (Croatia - VIS cohort; Sweden - NSPHS cohort; Great Britain - ORCADES cohort). N-glycans have been analyzed with High Performance Liquid Chromatography (HPLC) and lipids with Electrospray Ionization Tandem Mass Spectrometry (ESI-MS/MS) covering sterol lipids, glycerolipids, glycerophospholipids and sphingolipids in eight subclasses. Overall, 8418 associations were calculated using linear mixed effect models adjusted for pedigree, sex, age and multiple testing. We found 330 significant correlations in VIS. Pearson's correlation coefficient r ranged from -0.27 to 0.34 with corresponding p-values between 1.45 × 10(-19) and 4.83 × 10(-6), indicating statistical significance. A total of 71 correlations in VIS could be replicated in NSPHS (r = [-0.19; 0.35], p = [4.16 × 10(-18); 9.38 × 10(-5)]) and 31 correlations in VIS were also found in ORCADES (r = [-0.20; 0.24], p = [2.69 × 10(-10); 7.55 × 10(-5)]). However, in total only 10 correlations between a subset of triantennary glycans and unsaturated phosphatidylcholine, saturated ceramide, and sphingomyelin lipids in VIS (r = [0.18; 0.34], p = [2.98 × 10(-21); 1.69 × 10(-06)]) could be replicated in both NSPHS and ORCADES. In summary, the results show strong and consistent associations between certain glycans and lipids in all populations, but also population-specific correlations which may be caused by environmental and genetic differences. These associations point towards potential interactive metabolic pathways.
UR - http://www.scopus.com/inward/record.url?scp=79956085026&partnerID=8YFLogxK
U2 - 10.1039/c0mb00095g
DO - 10.1039/c0mb00095g
M3 - Article
C2 - 21445428
SN - 1742-206X
VL - 7
SP - 1852
EP - 1862
JO - Molecular BioSystems
JF - Molecular BioSystems
IS - 6
ER -