Goal-Driven Sequential Data Abstraction

Umar Riaz Muhammad, Yongxin Yang, Timothy Hospedales, Tao Xiang, Yi-Zhe Song

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Automatic data abstraction is an important capability for both benchmarking machine intelligence and supporting summarization applications. In the former one asks whether a machine can ‘understand’ enough about the meaning of input data to produce a meaningful but more compact abstraction. In the latter this capability is exploited for saving space or human time by summarizing the essence of input data. In this paper we study a general reinforcement learning based framework for learning to abstract sequential data in a goal-driven way. The ability to define different abstraction goals uniquely allows different aspects of the input data to be preserved according to the ultimate purpose of the abstraction. Our reinforcement learning objective does not require human-defined examples of ideal abstraction. Importantly our model processes the input sequence holistically without being constrained by the original input order. Our framework is also domain agnostic – we demonstrate applications to sketch, video and text data and achieve promising results in all domains.
Original languageEnglish
Title of host publication2019 IEEE/CVF International Conference on Computer Vision (ICCV)
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Pages71-80
Number of pages10
ISBN (Electronic)978-1-7281-4803-8
ISBN (Print)978-1-7281-4804-5
DOIs
Publication statusPublished - 27 Feb 2020
EventInternational Conference on Computer Vision 2019 - Seoul, Korea, Republic of
Duration: 27 Oct 20192 Nov 2019
http://iccv2019.thecvf.com/

Publication series

Name
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
ISSN (Print)1550-5499
ISSN (Electronic)2380-7504

Conference

ConferenceInternational Conference on Computer Vision 2019
Abbreviated titleICCV 2019
Country/TerritoryKorea, Republic of
CitySeoul
Period27/10/192/11/19
Internet address

Fingerprint

Dive into the research topics of 'Goal-Driven Sequential Data Abstraction'. Together they form a unique fingerprint.

Cite this