Projects per year
Abstract / Description of output
We give polynomial time algorithms for quantitative (and qualitative) reachability analysis for Branching Markov Decision Processes (BMDPs). Specifically, given a BMDP, and given an initial population, where the objective of the controller is to maximize (or minimize) the probability of eventually reaching a population that contains an object of a desired (or undesired) type, we give algorithms for approximating the supremum (infimum) reachability probability, within desired precision epsilon > 0, in time polynomial in the encoding size of the BMDP and in log(1/epsilon). We furthermore give P-time algorithms for computing epsilon-optimal strategies for both maximization and minimization of reachability probabilities. We also give P-time algorithms for all associated qualitative analysis problems, namely: deciding whether the optimal (supremum or infimum) reachability probabilities are 0 or 1. Prior to this paper, approximation of optimal reachability probabilities for BMDPs was not even known to be decidable.
Our algorithms exploit the following basic fact: we show that for any BMDP, its maximum (minimum) non-reachability probabilities are given by the greatest fixed point (GFP) solution g* in [0,1]^n of a corresponding monotone max (min) Probabilistic Polynomial System of equations (max/min-PPS), x=P(x), which are the Bellman optimality equations for a BMDP with non-reachability objectives. We show how to compute the GFP of max/min PPSs to desired precision in P-time.
Our algorithms exploit the following basic fact: we show that for any BMDP, its maximum (minimum) non-reachability probabilities are given by the greatest fixed point (GFP) solution g* in [0,1]^n of a corresponding monotone max (min) Probabilistic Polynomial System of equations (max/min-PPS), x=P(x), which are the Bellman optimality equations for a BMDP with non-reachability objectives. We show how to compute the GFP of max/min PPSs to desired precision in P-time.
Original language | English |
---|---|
Title of host publication | Automata, Languages, and Programming |
Subtitle of host publication | 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II |
Publisher | Springer |
Number of pages | 12 |
ISBN (Electronic) | 978-3-662-47666-6 |
ISBN (Print) | 978-3-662-47665-9 |
DOIs | |
Publication status | Published - 2015 |
Fingerprint
Dive into the research topics of 'Greatest Fixed Points of Probabilistic Min/Max Polynomial Equations, and Reachability for Branching Markov Decision Processes?'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Sublinear Algorithms for Approximating Probability Distribution
Diakonikolas, I.
1/09/14 → 31/08/15
Project: Research