@inproceedings{e27ac471ef9e4417938de391cdd5d8af,
title = "Hamiltonian Latent Operators for content and motion disentanglement in image sequences",
abstract = "We introduce \textit{HALO} -- a deep generative model utilising HAmiltonian Latent Operators to reliably disentangle content and motion information in image sequences. The \textit{content} represents summary statistics of a sequence, and \textit{motion} is a dynamic process that determines how information is expressed in any part of the sequence. By modelling the dynamics as a Hamiltonian motion, important desiderata are ensured: (1) the motion is reversible, (2) the symplectic, volume-preserving structure in phase space means paths are continuous and are not divergent in the latent space. Consequently, the nearness of sequence frames is realised by the nearness of their coordinates in the phase space, which proves valuable for disentanglement and long-term sequence generation. The sequence space is generally comprised of different types of dynamical motions. To ensure long-term separability and allow controlled generation, we associate every motion with a unique Hamiltonian that acts in its respective subspace. We demonstrate the utility of \textit{HALO} by swapping the motion of a pair of sequences, controlled generation, and image rotations.",
author = "Asif Khan and Storkey, {Amos J}",
year = "2023",
month = apr,
day = "1",
language = "English",
volume = "35",
series = "Advances in Neural Information Processing Systems",
publisher = "Curran Associates Inc",
pages = "7250--7263",
editor = "S. Koyejo and S. Mohamed and A. Agarwal and D. Belgrave and K. Cho and A. Oh",
booktitle = "Advances in Neural Information Processing Systems 35 (NeurIPS 2022)",
}