Harnessing omics sciences, population databases, and open innovation models for theranostics-guided drug discovery and development

Edward S. Dove, Vural Özdemir, Yann Joly*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

Abstract

Preclinical Research Omics science-driven population databases and biobanks help in enabling robust, large-scale, high-throughput biomarker discovery and validation. As targeted drug therapies will require the development of companion diagnostic tests to identify patients most suitable for a given drug therapy, databases and biobanks represent one of the optimal and rapidly emerging ways to enable personalized medicine with reduced development timelines. Moreover, data-intensive omics technologies represent a new dual reconfiguration of 21st-century science whereby communitarian value-driven "infrastructure science" and individual entrepreneurship-driven "discovery science" now coexist. In the hope of overcoming the "transfer problem" in omics research that continues to hinder the full realization of concrete applications for human health, biobanks and databases are increasingly harnessing various open innovation models, such as open access, open source, expert sourcing, and patent pools. These models appear at various stages (drug repurposing, upstream, and downstream) of the research and development (R&D) process. While laudable, their inclusion will likely spur a variety of ethical, legal, and social issues (ELSI), including those revolving around consent, privacy, and property. By collectively anticipating and analyzing these issues, tensions among these innovation models and extant laws and policies regulating biomedical research and therapeutics based on the classical discovery science model can be resolved. This article does not posit which models will work best to achieve drug discovery and development breakthroughs, but rather, advocates for evidence-based analyses that couple technical and economic data with global ELSI research to foster a more nuanced, contextualized, and thorough understanding of the new dual configuration of postgenomics pharmaceutical R&D.

Original languageEnglish
Pages (from-to)439-446
Number of pages8
JournalDrug Development Research
Volume73
Issue number7
DOIs
Publication statusPublished - 1 Nov 2012

Keywords

  • data-intensive science
  • database
  • omics sciences
  • open innovation
  • theranostics

Fingerprint

Dive into the research topics of 'Harnessing omics sciences, population databases, and open innovation models for theranostics-guided drug discovery and development'. Together they form a unique fingerprint.

Cite this