Herschel-ATLAS: the far-infrared-radio correlation at z 0.5

Matt J. Jarvis, D. J. B. Smith, D. G. Bonfield, M. J. Hardcastle, J. T. Falder, J. A. Stevens, R. J. Ivison, R. Auld, M. Baes, I. K. Baldry, S. P. Bamford, N. Bourne, S. Buttiglione, A. Cava, A. Cooray, A. Dariush, G. de Zotti, J. S. Dunlop, L. Dunne, S. DyeS. Eales, J. Fritz, D. T. Hill, R. Hopwood, D. H. Hughes, E. Ibar, D. H. Jones, L. Kelvin, A. Lawrence, L. Leeuw, S. J. Maddox, M. J. Michalowski, M. Negrello, P. Norberg, M. Pohlen, M. Prescott, E. E. Rigby, A. Robotham, G. Rodighiero, D. Scott, R. Sharp, P. Temi, M. A. Thompson, P. van der Werf, E. van Kampen, C. Vlahakis, G. White

Research output: Contribution to journalArticlepeer-review


We use data from the Herschel-ATLAS to investigate the evolution of the far-infrared-radio correlation over the redshift range 0 < z < 0.5. Using the total far-infrared luminosity of all > 5 sigma sources in the Herschel-ATLAS Science Demonstration Field and cross-matching these data with radio data from the Faint Images of the Radio Sky at Twenty-Centimetres (FIRST) survey and the NRAO Very Large Array (VLA) Northern Sky Survey (NVSS), we obtain 104 radio counterparts to the Herschel sources. With these data we find no evidence for evolution in the far-infrared-radio correlation over the redshift range 0 < z < 0.5, where the median value for the ratio between far-infrared and radio luminosity, q(IR), over this range is q(IR) = 2.40 +/- 0.12 (and a mean of q(IR) = 2.52 +/- 0.03 accounting for the lower limits), consistent with both the local value determined from IRAS and values derived from surveys targeting the high-redshift

Original languageEnglish
Pages (from-to)92-101
Number of pages10
JournalMonthly Notices of the Royal Astronomical Society
Issue number1
Publication statusPublished - Nov 2010


Dive into the research topics of 'Herschel-ATLAS: the far-infrared-radio correlation at z 0.5'. Together they form a unique fingerprint.

Cite this