Herschel/HIFI observations of ionised carbon in the beta Pictoris debris disk

R. Ivison

Research output: Contribution to journalArticlepeer-review

Abstract

Context. The dusty debris disk around the similar to 20 Myr old main-sequence A-star beta Pictoris is known to contain gas. Evidence points towards a secondary origin of the gas as opposed to being a direct remnant from the initial protoplanetary disk, although the dominant gas production mechanism is so far not identified. The origin of the observed overabundance of C and O compared with solar abundances of metallic elements such as Na and Fe is also unclear. Aims. Our goal is to constrain the spatial distribution of C in the disk, and thereby the gas origin and its abundance pattern. Methods. We used the HIFI instrument on board the Herschel Space Observatory to observe and spectrally resolve C II emission at 158 mu m from the beta Pic debris disk. Assuming a disk in Keplerian rotation and a model for the line emission from the disk, we used the spectrally resolved line profile to constrain the spatial distribution of the gas. Results. We detect the C II 158 mu m emission. Modelling the shape of the emission line shows that most of the gas is located at about similar to 100 AU or beyond. We estimate a total C gas mass of 1.3(-0.5)(+1.3) x 10(2) M-circle plus (central 90% confidence interval). The data suggest that more gas is located on the south-west side of the disk than on the north-east side. The shape of the emission line is consistent with the hypothesis of a well mixed gas (constant C/Fe ratio throughout the disk). Assuming instead a spatial profile expected from a simplified accretion disk model, we found it to give a significantly poorer fit to the observations. Conclusions. Since the bulk of the gas is found outside 30 AU, we argue that the cometary objects known as ``falling evaporating bodies'' are probably not the dominant source of gas; production from grain-grain collisions or photodesorption seems more likely. The incompatibility of the observations with a simplified accretion disk model might favour a preferential depletion explanation for the overabundance of C and O, although it is unclear how much this conclusion is affected by the simplifications made. More stringent constraints on the spatial distribution will be available from ALMA observations of C I emission at 609 mu m.
Original languageUndefined/Unknown
JournalAstronomy & Astrophysics
Volume563
DOIs
Publication statusPublished - 1 Mar 2014

Keywords

  • protoplanetary disks
  • stars: individual: beta Pictoris
  • planetary systems
  • methods: observational
  • circumstellar matter
  • infrared: general

Cite this