TY - JOUR
T1 - Higgs-boson plus Dijets: Higher-Order Matching for High-Energy Predictions
AU - Andersen, Jeppe R.
AU - Hapola, Tuomas
AU - Heil, Marian
AU - Maier, Andreas
AU - Smillie, Jennifer M.
N1 - 28 pages, 15 figures
PY - 2018/8/16
Y1 - 2018/8/16
N2 - Several important processes and analyses at the LHC are sensitive to higher-order perturbative corrections beyond what can currently be calculated at fixed order. The formalism of High Energy Jets (HEJ) calculates the corrections systematically enhanced for a large ratio of the centre-of-mass energy to the transverse momentum of the observed jets. These effects are relevant in the analysis of e.g. Higgs-boson production in association with dijets within the cuts devised to enhance the contribution from Vector Boson Fusion (VBF). HEJ obtains an all-order approximation, based on logarithmic corrections which are matched to fixed-order results in the cases where these can be readily evaluated. In this paper we present an improved framework for the matching utilised in HEJ, which for merging of tree-level results is mathematically equivalent to the one used so far. However, by starting from events generated at fixed order and supplementing these with the all-order summation, it is computationally simpler to obtain matching to calculations of high multiplicity. We demonstrate that the impact of the higher-multiplicity matching on predictions is small for the gluon-fusion (GF) contribution of Higgs-boson production in association with dijets in the VBF-region, so perturbative stability against high-multiplicity matching has been achieved within HEJ. We match the improved HEJ prediction to the inclusive next-to-leading order (NLO) cross section and compare to pure NLO in the h->photon photon channel with standard VBF cuts.
AB - Several important processes and analyses at the LHC are sensitive to higher-order perturbative corrections beyond what can currently be calculated at fixed order. The formalism of High Energy Jets (HEJ) calculates the corrections systematically enhanced for a large ratio of the centre-of-mass energy to the transverse momentum of the observed jets. These effects are relevant in the analysis of e.g. Higgs-boson production in association with dijets within the cuts devised to enhance the contribution from Vector Boson Fusion (VBF). HEJ obtains an all-order approximation, based on logarithmic corrections which are matched to fixed-order results in the cases where these can be readily evaluated. In this paper we present an improved framework for the matching utilised in HEJ, which for merging of tree-level results is mathematically equivalent to the one used so far. However, by starting from events generated at fixed order and supplementing these with the all-order summation, it is computationally simpler to obtain matching to calculations of high multiplicity. We demonstrate that the impact of the higher-multiplicity matching on predictions is small for the gluon-fusion (GF) contribution of Higgs-boson production in association with dijets in the VBF-region, so perturbative stability against high-multiplicity matching has been achieved within HEJ. We match the improved HEJ prediction to the inclusive next-to-leading order (NLO) cross section and compare to pure NLO in the h->photon photon channel with standard VBF cuts.
KW - hep-ph
U2 - 10.1007/JHEP08(2018)090
DO - 10.1007/JHEP08(2018)090
M3 - Article
SN - 1029-8479
VL - 2018
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
IS - 08
M1 - 090
ER -