Homogeneous Hydrophobic-Hydrophilic Surface Patterns Enhance Permeation of Nanoparticles through Lipid Membranes

Paraskevi Gkeka, Lev Sarkisov, Panagiotis Angelikopoulos*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We employ coarse-grained molecular dynamics simulations to understand why certain interaction patterns on the surface of a nanoparticle promote its translocation through a lipid membrane. We demonstrate that switching from a random, heterogeneous distribution of hydrophobic and hydrophilic areas on the surface of a nanoparticle to even, homogeneous patterns substantially flattens the translocation free-energy profile and dramatically enhances permeation. We then proceed to construct a more detailed coarse-grained model of a nanoparticle with flexible hydrophobic and hydrophilic ligands arranged into striped domains. Molecular dynamics simulations of these nanoparticles show that the terminal groups of the ligands tend to arrange themselves into homogeneous patterns, despite the underlying striped domains. These observations are linked to recent experimental studies.

Original languageEnglish
Pages (from-to)1907-1912
Number of pages6
JournalThe Journal of Physical Chemistry Letters
Volume4
Issue number11
DOIs
Publication statusPublished - 6 Jun 2013

Keywords

  • MONOLAYER-PROTECTED NANOPARTICLES
  • HISTOGRAM ANALYSIS METHOD
  • FREE-ENERGY CALCULATIONS
  • MOLECULAR-DYNAMICS
  • WATER TRANSPORT
  • CELL-MEMBRANES
  • TRANSLOCATION
  • SIMULATION
  • BILAYERS
  • CANCER

Cite this