Homogenization for inertial particles in a random flow

G. A. Pavliotis, A. M. Stuart, K. C. Zygalakis

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

We study the problem of homogenization for inertial particles moving in a time-dependent random velocity field and subject to molecular diffusion. We show that, under appropriate assumptions on the velocity field, the large-scale, long-time behavior of the inertial particles is governed by an effective diffusion equation for the position variable alone. This is achieved by the use of a formal multiple scales expansion in the scale parameter. The expansion relies on the hypoellipticity of the underlying diffusion. An expression for the diffusivity tensor is found and various of its properties are studied. The results of the formal multiscale analysis are justified rigorously by the use of the martingale central limit theorem. Our theoretical findings are supported by numerical investigations where we study the parametric dependence of the effective diffusivity on the various non-dimensional parameters of the problem.
Original languageEnglish
Pages (from-to)507-531
Number of pages25
JournalCommunications in Mathematical Sciences
Volume5
Issue number3
Publication statusPublished - 29 Aug 2007

Fingerprint

Dive into the research topics of 'Homogenization for inertial particles in a random flow'. Together they form a unique fingerprint.

Cite this