TY - JOUR
T1 - HRPZyme Assisted Recognition of SARS-CoV-2 infection by Optical Measurement (HARIOM)
AU - Ahmad, Mohd
AU - Sharma, Pooja
AU - Kamai, Asangla
AU - Agrawal, Anurag
AU - Faruq, Mohammed
AU - Kulshreshtha, Ankur
PY - 2021/9/1
Y1 - 2021/9/1
N2 - In order to define public health policies, simple, inexpensive and robust detection methods for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are vital for mass-testing in resource limited settings. The current choice of molecular methods for identification of SARS-CoV-2 infection includes nucleic acid-based testing (NAT) for viral genetic material and antigen-based testing for viral protein identification. Host exposure is detected using antibody detection assays. While NATs require sophisticated instrument and trained manpower, antigen tests are plagued by their low sensitivity and specificity. Thus, a test offering sensitive detection for presence of infection as a colorimetric readout holds promise to enable mass testing in resource constrained environments by minimally trained personnel. Here we present a novel HRPZyme Assisted Recognition of Infection by Optical Measurement (HARIOM) assay which combines specificity of NATs with sensitivity of enzymatic assays resulting in enhanced signal to noise ratios in an easily interpretable colorimetric readout. Using this assay, we could detect up to 102 copies of synthetic viral RNA spiked in saliva as a detection matrix. Validating our assay on suspected human subjects, we found concordance with PCR based readouts with visible colorimetric distinction between positive and negative samples in less than an hour. We believe that this assay holds the potential to aid in mass screening to detect SARS-CoV-2 infection by facilitating colorimetric detection with minimal resources and less trained personnel.
AB - In order to define public health policies, simple, inexpensive and robust detection methods for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are vital for mass-testing in resource limited settings. The current choice of molecular methods for identification of SARS-CoV-2 infection includes nucleic acid-based testing (NAT) for viral genetic material and antigen-based testing for viral protein identification. Host exposure is detected using antibody detection assays. While NATs require sophisticated instrument and trained manpower, antigen tests are plagued by their low sensitivity and specificity. Thus, a test offering sensitive detection for presence of infection as a colorimetric readout holds promise to enable mass testing in resource constrained environments by minimally trained personnel. Here we present a novel HRPZyme Assisted Recognition of Infection by Optical Measurement (HARIOM) assay which combines specificity of NATs with sensitivity of enzymatic assays resulting in enhanced signal to noise ratios in an easily interpretable colorimetric readout. Using this assay, we could detect up to 102 copies of synthetic viral RNA spiked in saliva as a detection matrix. Validating our assay on suspected human subjects, we found concordance with PCR based readouts with visible colorimetric distinction between positive and negative samples in less than an hour. We believe that this assay holds the potential to aid in mass screening to detect SARS-CoV-2 infection by facilitating colorimetric detection with minimal resources and less trained personnel.
UR - https://doi.org/10.1016/j.bios.2021.113280
U2 - 10.1016/j.bios.2021.113280
DO - 10.1016/j.bios.2021.113280
M3 - Article
SN - 0956-5663
VL - 187
JO - Biosensors and Bioelectronics
JF - Biosensors and Bioelectronics
M1 - 113280
ER -