Hyper Cross-Linked Polymers as Additives for Preventing Aging of PIM-1 Membranes

Federico Begni, Elsa Lasseuguette, Geo Paul, Chiara Bisio, Leonardo Marchese, Giorgio Gatti, Maria-Chiara Ferrari

Research output: Contribution to journalArticlepeer-review

Abstract

: Mixed-matrix membranes (MMMs) are membranes that are composed of polymers embedded with inorganic particles. By combining the polymers with the inorganic fillers, improvements can be made to the permeability compared to the pure polymer membranes due to new pathways for gas transport. However, the fillers, such as hyper cross-linked polymers (HCP), can also help to reduce the physical aging of the MMMs composed of a glassy polymer matrix. Here we report the synthesis of two novel HCP fillers, based on the Friedel–Crafts reaction between a tetraphenyl methane monomer and a bromomethyl benzene monomer. According to the temperature and the solvent used during the reaction (dichloromethane (DCM) or dichloroethane (DCE)), two different particle sizes have been obtained, 498 nm with DCM and 120 nm with DCE. The change in the reaction process also induces a change in the surface area and pore volumes. Several MMMs have been developed with PIM-1 as matrix and HCPs as fillers at 3% and 10wt % loading. Their permeation performances have been studied over the course of two years in order to explore physical aging effects over time. Without filler, PIM-1 exhibits the classical aging behavior of polymers of intrinsic microporosity, namely, a progressive decline in gas permeation, up to 90% for CO2 permeability. On the contrary, with HCPs, the physical aging at longer terms in PIM-1 is moderated with a decrease of 60% for CO2 permeability. 13C spin-lattice relaxation times (T1) indicates that this slowdown is related to the interactions between HCPs and PIM-1.
Original languageEnglish
Article number463
JournalMembranes
Volume11
Issue number7
DOIs
Publication statusPublished - 23 Jun 2021

Fingerprint

Dive into the research topics of 'Hyper Cross-Linked Polymers as Additives for Preventing Aging of PIM-1 Membranes'. Together they form a unique fingerprint.

Cite this