TY - JOUR
T1 - Identification of a novel cis-regulatory element for UV-B-induced transcription in Arabidopsis
AU - Safrany, Judit
AU - Haasz, Veronika
AU - Mate, Zoltan
AU - Ciolfi, Andrea
AU - Feher, Balazs
AU - Oravecz, Attila
AU - Stec, Agnieszka
AU - Dallmann, Geza
AU - Morelli, Giorgio
AU - Ulm, Roman
AU - Nagy, Ferenc
PY - 2008/5
Y1 - 2008/5
N2 - Ultraviolet-B light (UV-B) regulates the expression of genes in a wavelength- and fluence rate-dependent fashion. A signaling pathway consisting of CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) and UV RESISTANCE LOCUS 8 (UVR 8) mediates responsiveness to longer wavelength, low intensity UV-B light-activating, for example, HY5 gene expression. By contrast, transcription of another group of genes, including ANAC13, modulated by shorter wavelength, higher intensity UV-B is controlled by a yet unknown and largely COP1-independent signaling cascade. Here we provide evidence by promoter deletion analysis, and characterization of genetic mutants displaying aberrant expression patterns, that two cis-regulatory elements, designated MRE(ANAC13) and UVBox(ANAC13), are required for maximal UV-B induction of the ANAC13 gene in transgenic plants. These elements are located in the proximal 150-bp region of the ANAC13 promoter. They show no significant similarity to each other; the putative MRE(ANAC13) (-AACCTT-) is closely related to MRE(CHS) (-AACCTA-) found in the CHALCONE SYNTHASE (CHS) gene, whereas UVBox(ANAC13) (with core sequence CAAG) represents a novel cis-regulatory element. The novel UVBox(ANAC13) sequence is significantly enriched in the promoter region of a subset of UV-B-induced genes with similar activation properties as ANAC13. In addition, we demonstrate that expression of a chimeric gene containing only the dimerized 12-mer containing UVBox(ANAC13) fused to a minimal CaMV35S promoter/luciferase reporter is (i) efficiently induced by shorter wavelength, higher intensity UV-B, but (ii) does not respond either to longer wavelength UV-B and red light or (iii) to abscisic acid treatment and osmotic, salt, heat and cold stresses.
AB - Ultraviolet-B light (UV-B) regulates the expression of genes in a wavelength- and fluence rate-dependent fashion. A signaling pathway consisting of CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) and UV RESISTANCE LOCUS 8 (UVR 8) mediates responsiveness to longer wavelength, low intensity UV-B light-activating, for example, HY5 gene expression. By contrast, transcription of another group of genes, including ANAC13, modulated by shorter wavelength, higher intensity UV-B is controlled by a yet unknown and largely COP1-independent signaling cascade. Here we provide evidence by promoter deletion analysis, and characterization of genetic mutants displaying aberrant expression patterns, that two cis-regulatory elements, designated MRE(ANAC13) and UVBox(ANAC13), are required for maximal UV-B induction of the ANAC13 gene in transgenic plants. These elements are located in the proximal 150-bp region of the ANAC13 promoter. They show no significant similarity to each other; the putative MRE(ANAC13) (-AACCTT-) is closely related to MRE(CHS) (-AACCTA-) found in the CHALCONE SYNTHASE (CHS) gene, whereas UVBox(ANAC13) (with core sequence CAAG) represents a novel cis-regulatory element. The novel UVBox(ANAC13) sequence is significantly enriched in the promoter region of a subset of UV-B-induced genes with similar activation properties as ANAC13. In addition, we demonstrate that expression of a chimeric gene containing only the dimerized 12-mer containing UVBox(ANAC13) fused to a minimal CaMV35S promoter/luciferase reporter is (i) efficiently induced by shorter wavelength, higher intensity UV-B, but (ii) does not respond either to longer wavelength UV-B and red light or (iii) to abscisic acid treatment and osmotic, salt, heat and cold stresses.
KW - ultraviolet-B light
KW - regulatory elements
KW - promoter structure
KW - NAC family transcription factor
KW - ANAC13
KW - mutants
UR - http://www.scopus.com/inward/record.url?scp=42549167884&partnerID=8YFLogxK
U2 - 10.1111/j.1365-313X.2008.03435.x
DO - 10.1111/j.1365-313X.2008.03435.x
M3 - Article
C2 - 18266923
VL - 54
SP - 402
EP - 414
JO - The Plant Journal
JF - The Plant Journal
SN - 0960-7412
IS - 3
ER -